Advertisement

Metal Hydrides pp 361-377 | Cite as

Thermodynamics of Metal-Hydrogen Systems

  • Ted B. Flanagan
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)

Abstract

In this paper some topics on the thermodynamics of metal-hydrogen systems will be discussed. The principal experimental techniques used to determine thermodynamic data in these systems are described and compared. A new technique, “hysteresis scan calorimetry”, is described and its application to metal-hydrogen systems is discussed. The thermodynamics of the solvus are developed. The effect of uniform and non-uniform stress on hydride precipitation is given and finally the application of the phase rule to metal-hydrogen systems is considered.

Keywords

Hydrogen Content Partial Molar Volume Solvus Free Energy Phase Rule Hydride Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Kuijpers, RCo5-H and related systems, Phil. Res. Repts. Suppl., No. 2, (1973).Google Scholar
  2. 2.
    J. Kleppa, P. Dantzer and M. E. Melnichak, High-temperature thermodynamics of the solid solutions of hydrogen in b.c.c. vanadium, niobium and tantalum, J. Chem. Phys., 61:4048 (1974).Google Scholar
  3. 3.
    P. Dantzer, O. J. Kleppa and M. E. Melnichak, High-temperature thermodynamics of the Ti-H2 and Ti-D2 systems, J. Chem. Phys., 64:139 (1976).Google Scholar
  4. 4.
    G. Boureau, 0. J. Kleppa and P. Dantzer, High-temperature thermodunamics of palladium-hydrogen. 1. Dilute solutions of H and D in Pd at 555K. J. Chem. Phys., 64:5247 (1976).Google Scholar
  5. 5.
    G. Boureau and20. J. Kleppa, High temperature thermodynamics of palladium-hydrogen. II. Temperature dependence of the partial molar properties of dilute solutions of hydrogen in the range 500 to 700K, J. Chem. Phys., 65:3915 (1976).Google Scholar
  6. 6.
    G. Boureau, 0. J. Kleppa and K. C. Hong, A thermodynamic study of dilute solutions of hydrogen and deuterium in Pd0.9Ag0.1 at 555K and 700K,J. Chem. Phys., 67:3437 (1977).Google Scholar
  7. 7.
    C. Picard, 0. J. Kleppa and G. Boureau, High temperature thermodynamics of the solutions of hydrogen in palladium-silver alloys, J. Chem. Phys., 70:2710 (1979).Google Scholar
  8. 8.
    C. Picard, 0. J. Kleppa and G. Boureau, A thermodynamic study of the palladium-hydrogen system at 245–352°C and at pressures up to 34 atm., J. Chem. Phys., 69:5549 (1978).Google Scholar
  9. 9.
    G. Boureau and O. J. Kleppa, Significance of thermal effects associated with solid-gas reactions in the Tian-Calvet calorimeter, J. Chem. Thermodyn., 9:543 (1977).Google Scholar
  10. 10.
    D. M. Nace and J. G. Aston, Palladium Hydride. I. The thermodynamic properties of Pd 9H between 273 and 345K, J. Am. Chem. Soc., 79: 3619 (1957).CrossRefGoogle Scholar
  11. 11.
    B. S. Bowerman, C. A. Wulff and T. B. Flanagan, Calorimetric enthalpies for solution of hydrogen in the LaNi5-H system, Z. Physile. Chem., 116:197 (1979).Google Scholar
  12. 12.
    B. S. Bowerman, G. E. Biehl, C. A. Wulff and T. B. Flanagan, Calorimetry within hysteresis loops of metal/hydrogen systems: Application to Pd/H, Ber. Bunsenges Physik. Chem., 84:536 (1980).Google Scholar
  13. 13.
    B. S. Bowerman, C. A. Wulff, G. E. Biehl and T. B. Flanagan, Calorimetry within hysteresis loops: Application to LaNi5-H, J. Less Common Met., 73:1 (1980).Google Scholar
  14. 14.
    C. Wagner, Hysteresis phenomena in the system palladium-hydrogen and in rotational transitions, Z. Physik. Chem., 143:386 (1944).Google Scholar
  15. 15.
    J. D. Clewley, T. Curran, T. B. Flanagan and W. A. Oates. Thermodynamic properties of hydrogen and deuterium dissolved in palladium at low concentrations over a wide temperature range, J.C.S. Faraday Trans. I 69:449 (1973).Google Scholar
  16. 16.
    W. A. Oates and T. B. Flanagan, The ideal interstitial solution and the effect of conditions of constant pressure and constant volume on non-ideality, Scripta. Met., 12:759 (1978).Google Scholar
  17. 17.
    T. B. Flanagan and W. A. Oates, Thermodynamics of metal-hydrogen systems, Ber. Bunsenges Physik Chem., 76:706 (1972).Google Scholar
  18. 18.
    W. A. Oates and T. B. Flanagan, The regular interstitial solution, J. Materials Science submitted.Google Scholar
  19. 19.
    T. B. Flangan and J. F. Lynch, The thermodynamics of a gas in equilibrium with two non-stoichiometric condensed phases, J. Phys. Chem., 79:444 (1975).Google Scholar
  20. 20.
    T. B. Flangan and W. A. Oates, Interpretation of the solvus line for metal-hydrogen systems, Scripte Met., 12: 873 (1978).Google Scholar
  21. 21.
    D. G. Westlake and S. T. Ockers, The isotope effect and the influence of interstitial impurities on the hydrogen solubility limit in niobium and vanadium, Met. Trans. A 6A:399 (1975).Google Scholar
  22. 22.
    N. E. Paton, B. S. Hickman and D. H. Leslie, Behavior of hydrogen in a-phase Ti-Al alloys, Met. Trans., 2:2791 (1971).Google Scholar
  23. 23.
    D. G. Westlake, A Generalized Model for hydrogen embrittlement, Trans. ASM 62:1000 (1969).Google Scholar
  24. 24.
    H. K. Birnbaum, M. L. Grossbeck and M. Amano, Hydride precipitation in Nb and some properties of NbH, J. Less-Common Met., 49:357 (1976).Google Scholar
  25. 25.
    S. Gahr, M. L. Grossbeck and H. K. Birnbaum, Hydrogen embrittlement of Nb. I. Macroscopic behavior at low temperatures, Acta Met., 25: 125 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Ted B. Flanagan
    • 1
  1. 1.Department of ChemistryUniversity of VermontBurlingtonUSA

Personalised recommendations