Metal Hydrides pp 313-327 | Cite as

Phase Transitions in Hydrogenated Nickel and Nickel Alloys Investigated by Magnetic Methods

  • Hermann Joh. Bauer
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)


The drastic changes in the spontaneous magnetization of hydride forming ferromagnetic metals as nickel and nickel alloys combined with the interstitial absorption of hydrogen can be used for the analysis of phase transitions in such systems. Further information may result from the shape of the temperature dependence of spontaneous magnetization including the position of the Curietemperature, and also from correlated phenomena as the ‘Ferromagnetic Resistance Anomaly’.— A metallographic decoration technique based on a settlement of magnetic iron particles on the surface of a decomposing hydride sample allows even a ‘visualization’ of details during the decomposing process.— The question of stability of the system regarded with respect to measurements under thermodynamic equilibrium conditions determines the method of their generation: the electrochemical way or the application of high pressure gaseous hydrogen.— Results of the mentioned methods are presented for hydrogenated alloys of nickel e.g. with Cu, Fe, Mn. Different forms of magnetic behavior are to be recognized like shifts of the Curie region, an influence of the hydrogen on cluster magnetism or precipitation-like effects.


Phase Surface Spontaneous Magnetization Hydrogen Desorption Differential Transformer Method Thermodynamic Equilibrium Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Baranowski and M Smialowski, Bull. Acad. Polon. Sci., Ser. sci. chim., geol. geogr 7, 663 (1959).Google Scholar
  2. 2.
    B. Baranowski and K. Bochenska, Roczniki Chem. (Ann. Soc. chim. Polonorum) 38, 1419 (1964).Google Scholar
  3. 3.
    B. Baranowski and R. Wisniewski, Bull. Acad. polon. Sci., Ser. Sci. chim. 14, 273 (1966).Google Scholar
  4. 4.
    B. Baranowski, Ber. Bunsenges. Physik. Chem. 76, 714 (1972).Google Scholar
  5. 5.
    H. J. Bauer and E. Schmidbauer, Naturwissenschaften 48, 425 (1961);CrossRefGoogle Scholar
  6. H. J. Bauer and E. Schmidbauer, Z. Phys. 164, 367 (1961).CrossRefGoogle Scholar
  7. 6.
    H. J. Bauer, M. Becker, H. Pretsch and M. Zwick, phys. stat, sol. (a) 47, 445 (1978).CrossRefGoogle Scholar
  8. 7.
    H. J. Bauer, Z. Naturforsch. 22a, 468 (1967).Google Scholar
  9. 8.
    K. A. Kohler and H. J. Bauer, phys. stat. sol. (a) 14, K27 (1972).CrossRefGoogle Scholar
  10. 9.
    E: G. Poniatowskij, V. E. Antonov and I. T. Belash, Dokl. Akad. Nauk SSSR 229, 391a (1976).Google Scholar
  11. 10.
    H. Kronmüller, in Hydrogen in Metals I, G. Alefeld and J. Völkl, eds., Springer Verlag Berlin (1978), p. 289.CrossRefGoogle Scholar
  12. 11.
    H. J. Bauer and B. Baranowski, in High-Pressure Science and Technology, Vol. 1, K. D. Timmerhaus and H. S. Barber, eds., Plenum Press, New York (1976), p. 248.Google Scholar
  13. 12.
    H. J. Schenk, H. J. Bauer and B. Baranowski, phys. stat. sol. (a) 52, 195 (1979).CrossRefGoogle Scholar
  14. 13.
    S. von Aufschnaiter and H. J. Bauer, Z. angew. Phys. 17, 209 (1964).Google Scholar
  15. 14.
    H. J. Bauer and D. Jonitz, Z. angew. Phys. 28, 40 (1969).Google Scholar
  16. 15.
    G. Bacherer, unpublished.Google Scholar
  17. 16.
    H. J. Bauer, Z. angew. Phys. 26, 87 (1969).Google Scholar
  18. 17.
    H.-U. Daniel and H. J. Bauer, J. Magn. Magn. Mat. 6, 302 (1977).CrossRefGoogle Scholar
  19. 18.
    B. Baranowski and M. Tkacz, Polish J. Chem. 54, 819 (1980).Google Scholar
  20. 19.
    K. Ludwig, unpublished.Google Scholar
  21. 20.
    H. J. Bauer and U. Thomas, Z. Naturforsch. 21a, 2106 (1966).Google Scholar
  22. 21.
    D. Jonitz and H. J. Bauer, Z. Naturforsch. 33a, 1599 (1978).Google Scholar
  23. 22.
    H. J. Bauer and K. A. Kohler, Phys. Lett. 41A, 291 (1972).CrossRefGoogle Scholar
  24. 23.
    A. Janka, Naturwissenschaften 47, 225 (1960); Bull. Acad. Polon. Sci., Ser. sci. chim. 8, 131 (1960).Google Scholar
  25. 24.
    H. J. Bauer and U. Ruczka, Z. angew. Phys. 21, 18 (1966).Google Scholar
  26. 25.
    H. J. Bauer, E. Pfrenger and K. Stierstadt, Z. Naturforsch. 22a, 549 (1967).Google Scholar
  27. 26.
    H. J. Bauer and B. Baranowski, in Proc. Europ. High Pressure Research Group (14th Annual Meeting), W.G.S. Scaife, ed., Typografia Hiberniae, Dublin (1976), p. 3.Google Scholar
  28. 27.
    H. J. Bauer and B. Baranowski, Phys. stat. sol. (a) 40, K35 (1977).CrossRefGoogle Scholar
  29. 28.
    H. J. Bauer, J. Magn. Magn. Mat. 15–18, 1267 (1980).Google Scholar
  30. 29.
    H. J. Bauer, J. Phys. E 10, 332 (1977).CrossRefGoogle Scholar
  31. 30.
    M. Krukowski and B. Baranowski, J. less-common. Metals 49, 385 (1976).CrossRefGoogle Scholar
  32. 31.
    H. J. Bauer, H. J. Schenk and B. Baranowski, Trans. Jpn. Inst. Met., Suppl. 21, 377 (1980).Google Scholar
  33. 32.
    B. Baranowski and S. Filipek, Roczn. Chemii 47, 2165 (1973).Google Scholar
  34. 33.
    E. G. Poniatowskij, W. E. Antonov and I. T. Belash, Dokl. Akad. Nauk SSR 230, 649 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Hermann Joh. Bauer
    • 1
  1. 1.Sektion PhysikUniversity of MunichFederal Republic of Germany

Personalised recommendations