Advertisement

Membrane/Cytoskeleton Communication

  • Karina F. Meiri
Part of the Subcellular Biochemistry book series (SCBI, volume 37)

Abstract

Accumulations of particular lipids in ordered arrays in the membrane (termed microdomains or lipid rafts) can attract proteins with specific targeting domains. Both the lipid and protein components of rafts communicate with the cytoskeleton directly thereby regulating cellular responses. Recent evidence implicating phosphoinositide 1,5 bisphosphate (PIP2) in cytoskeletal regulation shows that agonist sensitive regulation of PIP2 homoeostasis occurs specifically rafts, which appear to provide a major structural substrate for its function. The crucial role of PIP2 in generating cytoskeletal responses is chiefly achieved by regulating proteins that control actin dynamics directly. Many of these regulatory proteins are also specifically enriched in rafts either directly (by insertion into the lipid bilayer via acetylation motifs), or indirectly via interactions with other raft components. The notion that rafts form membrane platforms or modules that mediate signaling responses has been most extensively demonstrated in the immune synapse (IS) of T cells, a com-plex assemblage of rafts that integrates signaling cascades originating from the simultaneous activation of a wide variety of receptors. The IS is essential for both the amplification and maintenance of T-cell activation, and its assembly at the antigen presenting site depends on the interactions between rafts and the actin cytoskeleton that regulates coalescence of smaller raft components into the larger IS complex. Likewise the neuron, which represents the most highly polarized cell in the body, utilizes the regulation of actin dynamics in response to a plethora of extracellular signals to control axon pathfinding thereby sculpting nervous system cytoarchitecture with utmost precision. It is now becoming clear, that as in the T-cell, lipid rafts in the growing axon can assemble into highly specific, yet malleable and dynamic, signaling modules that regulate actin dynamics in a fashion that is also PIP2-dependent and that utilizes both familiar and novel regulatory mechanisms It seems clear that raft mediated cytoskeletal regulation represents a highly conserved mechanism to integrate cellular responses to diverse signals.

Keywords

Actin Filament Actin Cytoskeleton Lipid Raft Growth Cone Actin Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airaksinen, M.S. and Saarma, M., 2002. The GDNF family: signalling, biological functions and therapeutic value, Nat Rev Neurosci. 3: 383–394.PubMedCrossRefGoogle Scholar
  2. Alonso, M.A. and Millan, J., 2001. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes, J Cell Sci. 114: 3957–3965.PubMedGoogle Scholar
  3. Anderson, R.G. and Jacobson, K., 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains, Science. 296: 1821–1825.PubMedCrossRefGoogle Scholar
  4. Anton, I.M., de la Fuente, M.A., Sims, T.N., Freeman, S., Ramesh, N., Hartwig, J.H., Dustin, M.L. and Geha, R.S., 2002. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation, Immunity. 16: 193–204.PubMedCrossRefGoogle Scholar
  5. Arbuzova, A., Schmitz, A.A. and Vergeres, G., 2002. Cross-talk unfolded: MARCKS proteins, Biochem J. 362: 1–12.PubMedCrossRefGoogle Scholar
  6. Ami, S., Keilbaugh, S.A., Ostermeyer, A.G. and Brown, D.A., 1998. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues, J Biol Chem. 273: 28478–28485.CrossRefGoogle Scholar
  7. Azuma, T., Witke, W, Stossel, T.P., Hartwig, J.H. and Kwiatkowski, D.J., 1998. Gelsolin is a downstream effector of rac for fibroblast motility, Embo J. 17: 1362–1370.PubMedCrossRefGoogle Scholar
  8. Banzai, Y, Miki, H., Yamaguchi, H. and Takenawa, T., 2000. Essential role of neural Wiskott-Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells, JBiol Chem. 275: 11987–11992.CrossRefGoogle Scholar
  9. Barkalow, K., Witke, W, Kwiatkowski, D.J. and Hartwig, J.H., 1996. Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein, J Cell Biol. 134: 389–399.PubMedCrossRefGoogle Scholar
  10. Bateman, J., Shu, H. and Van Vactor, D., 2000. The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo, Neuron. 26: 93–106.PubMedCrossRefGoogle Scholar
  11. Bateman, J. and Van Vactor, D., 2001. The Trio family of guanine-nucleotide-exchange fac-tors: regulators of axon guidance, J Cell Sci. 114: 1973–1980.PubMedGoogle Scholar
  12. Bear, J.E., Krause, M. and Gertler, F.B., 2001. Regulating cellular actin assembly, Curr Opin Cell Biol. 13: 158–166.PubMedCrossRefGoogle Scholar
  13. Bear, J.E., Loureiro, J.J., Libova, I., Fassler, R., Wehland, J. and Gertler, F.B., 2000. Negative regulation of fibroblast motility by Ena/VASP proteins, Cell. 101: 717–728.PubMedCrossRefGoogle Scholar
  14. Bear, J.E., Svitkina, T.M., Krause, M., Schafer, D.A., Loureiro, J.J., Strasser, G.A., Maly, LV., Chaga, O.Y., Cooper, J.A., Borisy, G.G. and Gertler, F.B., 2002. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility, Cell. 109: 509–521.PubMedCrossRefGoogle Scholar
  15. Bennett, V. and Gilligan, D.M., 1993. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane, Annu Rev Cell Biol. 9: 27–66.PubMedCrossRefGoogle Scholar
  16. Bilderback, T.R., Gazula, V.R., Lisanti, M.P. and Dobrowsky, R.T., 1999. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways, JBiol Chem. 274: 257–263.CrossRefGoogle Scholar
  17. Blackshear, P.J., 1993. The MARCKS family of cellular protein kinase C substrates, J Biol Chem. 268: 1501–1504.PubMedGoogle Scholar
  18. Blanchoin, L., Pollard, T.D. and Mullins, R.D., 2000. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks, Curr Biol. 10: 1273–1282.PubMedCrossRefGoogle Scholar
  19. Brown, D.A. and London, E., 1998. Structure and origin of ordered lipid domains in biological membranes, J Membr Biol. 164: 103–114.PubMedCrossRefGoogle Scholar
  20. Brown, D.A. and Rose, J.K., 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell. 68: 533–544.PubMedCrossRefGoogle Scholar
  21. Brown, F.D., Rozelle, A.L., Yin, H.L., Balla, T. and Donaldson, J.G., 2001. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic, J Cell Biol. 154: 1007–1017.PubMedCrossRefGoogle Scholar
  22. Bruckner, K., Pablo Labrador, J., Scheiffele, E, Herb, A., Seeburg, P.H. and Klein, R., 1999. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains, Neuron. 22: 511–524.PubMedCrossRefGoogle Scholar
  23. Cannon, J.L., Labno, C.M., Bosco, G., Seth, A., McGavin, M.H., Siminovitch, K.A., Rosen, M.K. and Burkhardt, J.K., 2001. Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation, Immunity. 15: 249–259.PubMedCrossRefGoogle Scholar
  24. Carlier, M.F., Laurent, V, Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, N.H. and Pantaloni, D., 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility, J Cell Biol. 136: 1307–1322.PubMedCrossRefGoogle Scholar
  25. Caroni, R, 2001. New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts, Embo J. 20: 4332–4336.PubMedCrossRefGoogle Scholar
  26. Casey, P.J., 1995. Protein lipidation in cell signaling, Science. 268: 221–225.PubMedCrossRefGoogle Scholar
  27. Chatah, N.E. and Abrams, C.S., 2001. G-protein-coupled receptor activation induces the membrane translocation and activation of phosphatidylinositol-4-phosphate 5-kinase I alpha by a Rac-and Rho-dependent pathway, JBiol Chem. 276: 34059–34065.CrossRefGoogle Scholar
  28. Chong, L.D., Traynor-Kaplan, A., Bokoch, G.M. and Schwartz, M.A., 1994. The small GTPbinding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells, Cell. 79: 507–513.PubMedCrossRefGoogle Scholar
  29. Cowan, C.A. and Henkemeyer, M., 2002. Ephrins in reverse, park and drive, Trends Cell Biol. 12: 339–346.PubMedCrossRefGoogle Scholar
  30. Dan, C., Nath, N., Liberto, M. and Minden, A., 2002. PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells, Mol Cell Biol. 22: 567–577.PubMedCrossRefGoogle Scholar
  31. Davy, A., Feuerstein, C. and Robbins, S.M., 2000. Signaling within a caveolae-like membrane microdomain in human neuroblastoma cells in response to fibroblast growth factor, J Neurochem. 74: 676–683.PubMedCrossRefGoogle Scholar
  32. Davy, A., Gale, N.W., Murray, E.W., Klinghoffer, R.A., Soriano, R, Feuerstein, C. and Robbins, S.M., 1999. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion, Genes Dev. 13: 3125–3135.PubMedCrossRefGoogle Scholar
  33. Dent, E.W. and Meiri, K.F., 1998. Distribution of phosphorylated GAP-43 (neuromodulin) in growth cones directly reflects growth cone behavior, JNeurobiol. 35: 287–299.CrossRefGoogle Scholar
  34. Dharmawardhane, S., Brownson, D., Lennartz, M. and Bokoch, G.M., 1999. Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils, JLeukoc Biol. 66: 521–527.Google Scholar
  35. Dodelet, V.C. and Pasquale, E.B., 2000. Eph receptors and ephrin ligands: embryogenesis to tumorigenesis, Oncogene. 19: 5614–5619.PubMedCrossRefGoogle Scholar
  36. Doherty, P. and Walsh, ES., 1996. CAM-FGF Receptor Interactions: A Model for Axonal Growth, Mol Cell Neurosci. 8: 99–111.CrossRefGoogle Scholar
  37. Draber, P. and Draberova, L., 2002. Lipid rafts in mast cell signaling, Mol Immunol. 38: 1247.PubMedCrossRefGoogle Scholar
  38. Du, Y., Weed, S.A., Xiong, W.C., Marshall, T.D. and Parsons, J.T., 1998. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons, Mol Cell Biol. 18: 5838–5851.PubMedGoogle Scholar
  39. Dyson, J.M., O’Malley, C.J., Becanovic, J., Munday, A.D., Berndt, M.C., Coghill, I.D., Nandurkar, H.H., Ooms, L.M. and Mitchell, C.A., 2001. The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin, J Cell Biol. 155: 1065–1079.PubMedCrossRefGoogle Scholar
  40. Edwards, D.C., Sanders, L.C., Bokoch, G.M. and Gill, G.N., 1999. Activation of LIM-kinase by Pakl couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics, Nat Cell Biol. 1: 253–259.PubMedCrossRefGoogle Scholar
  41. Ehler, E., van Leeuwen, F., Collard, J.G. and Salinas, P.C., 1997. Expression of Tiam-1 in the developing brain suggests a role for the Tiam-1-Rac signaling pathway in cell migration and neurite outgrowth, Mol Cell Neurosci. 9: 1–12.PubMedCrossRefGoogle Scholar
  42. Fra, A.M., Williamson, E., Simons, K. and Parton, R.G., 1994. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae, J Biol Chem. 269: 30745–30748.PubMedGoogle Scholar
  43. Fridriksson, E.K., Shipkova, P.A., Sheets, E.D., Holowka, D., Baird, B. and McLafferty, F.W., 1999. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry, Biochemistry. 38: 8056–8063.PubMedCrossRefGoogle Scholar
  44. Friedman, W.J. and Greene, L.A., 1999. Neurotrophin signaling via Trks and p75, Exp Cell Res. 253: 131–142.PubMedCrossRefGoogle Scholar
  45. Friedrichson, T. and Kurzchalia, T.V., 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking, Nature. 394: 802–805.PubMedCrossRefGoogle Scholar
  46. Fukami, K., Furuhashi, K., Inagaki, M., Endo, T., Hatano, S. and Takenawa, T., 1992. Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function, Nature. 359: 150–152.PubMedCrossRefGoogle Scholar
  47. Fukuoka, M., Miki, H. and Takenawa, T., 1997. Identification of N-WASP homologs in human and rat brain, Gene. 196: 43–48.PubMedCrossRefGoogle Scholar
  48. Gallego, M.D., Santamaria, M., Pena, J. and Molina, I.J., 1997. Defective actin reorganization and polymerization of Wiskott-Aldrich T cells in response to CD3-mediated stimulation, Blood. 90: 3089–3097.PubMedGoogle Scholar
  49. Giurisato, E., McIntosh, D.P., Tassi, M., Gamberucci, A. and Benedetti, A., 2003. T cell receptor can be recruited to a subset of plasma membrane rafts, independently of cell signalling and attendantly to raft clustering, JBiol Chem. 278: 6771–6778.CrossRefGoogle Scholar
  50. Goldberg, D. J., Foley, M. S.,Tang, D. and Grabham, P. W, 2000. Recruitment of the Arp2/3 complex and mena for the stimulation of actin polymerization in growth cones by nerve growth factor, JNeurosci Res. 4: 458–467.CrossRefGoogle Scholar
  51. Goldmann, W.H., 2001. Phosphorylation of filamin (ABP-280) regulates the binding to the lipid membrane, integrin, and actin, Cell Biol Int. 25: 805–808.PubMedCrossRefGoogle Scholar
  52. Gomez-Mouton, C., Abad, J.L., Mira, E., Lacalle, R.A., Gallardo, E., Jimenez-Baranda, S., Illa, I., Bernad, A., Manes, S. and Martinez, A.C., 2001. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization, Proc NatlAcad Sci USA. 98: 9642–9647.CrossRefGoogle Scholar
  53. He, Q., Dent, E.W. and Meiri, K.F., 1997. Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site, JNeurosci. 17: 3515–3524.Google Scholar
  54. He, Q. and Meiri, K.F., 2002. Isolation and characterization of detergent-resistant micro-domains responsive to NCAM-mediated signaling from growth cones, Mol Cell Neurosci. 19: 18–31.PubMedCrossRefGoogle Scholar
  55. Heiska, L., Alfthan, K., Gronholm, M., Vilja, P., Vaheri, A. and Carpen, O., 1998. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate, JBiol Chem. 273: 21893–21900.CrossRefGoogle Scholar
  56. Henke, R.C., Seeto, G.S. and Jeffrey, P.L., 1997. Thy-1 and AvGp50 signal transduction complex in the avian nervous system: c-Fyn and G alpha i protein association and activation of signalling pathways, JNeurosci Res. 49: 655–670.CrossRefGoogle Scholar
  57. Higgs, H.N. and Pollard, T.D., 2000. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex, J Cell Biol. 150: 1311–1320.PubMedCrossRefGoogle Scholar
  58. Hirao, M., Sato, N., Kondo, T., Yonemura, S., Monden, M., Sasaki, T., Takai, Y. and Tsukita, S., 1996. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway, J Cell Biol. 135: 37–51.PubMedCrossRefGoogle Scholar
  59. Hirose, M., Ishizaki, T., Watanabe, N., Uehata, M., Kranenburg, O., Moolenaar, W.H., Matsumura, E, Maekawa, M., Bito, H. and Narumiya, S., 1998. Molecular dissection of the Rho-associated protein kinase (p 1 60ROCK)-regulated neurite remodeling in neuro-blastoma N1E-115 cells, J Cell Biol. 141: 1625–1636.PubMedCrossRefGoogle Scholar
  60. Holdorf, A.D., Lee, K.H., Burack, W.R., Allen, P.M. and Shaw, A.S., 2002. Regulation of Lck activity by CD4 and CD28 in the immunological synapse, Nat Immunol. 3: 259–264.PubMedCrossRefGoogle Scholar
  61. Huang, C.S., Zhou, J., Feng, A.K., Lynch, C.C., Klumperman, J., DeArmond, S.J. and Mobley, W.C., 1999. Nerve growth factor signaling in caveolae-like domains at the plasma membrane, JBiol Chem. 274: 36707–36714.CrossRefGoogle Scholar
  62. Janes, P.W., Ley, S.C. and Magee, A.I., 1999. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor, J Cell Biol. 147: 447–461.PubMedCrossRefGoogle Scholar
  63. Kasahara, K., Watanabe, K., Takeuchi, K., Kaneko, H., Oohira, A., Yamamoto, T. and Sanai, Y, 2000. Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts, JBiol Chem. 275: 34701–34709.CrossRefGoogle Scholar
  64. Klein, C., Nguyen, D., Liu, C.H., Mizoguchi, A., Bhan, A.K., Miki, H., Takenawa, T., Rosen, ES., Alt, F.W., Mulligan, R.C. and Snapper, S.B., 2003. Gene therapy for Wiskott Aldrich Syndrome: rescue of T-cell signaling and amelioration of colitis upon transplantation of retrovirally transduced hematopoietic stem cells in mice, Blood. 101: 2159–2166.PubMedCrossRefGoogle Scholar
  65. Knaus, U.G. and Bokoch, G.M., 1998. The p21Rac/Cdc42-activated kinases (PAKs), Int J Biochem Cell Biol. 30: 857–862.PubMedCrossRefGoogle Scholar
  66. Kosugi, A., Saitoh, S., Noda, S., Yasuda, K., Hayashi, E, Ogata, M. and Hamaoka, T., 1999. Translocation of tyrosine-phosphorylated TCRzeta chain to glycolipid-enriched membrane domains upon T cell activation, Int Immunol. 11: 1395–1401.PubMedCrossRefGoogle Scholar
  67. Kouhara, H., Hadari, Y.R., Spivak-Kroizman, T., Schilling, J., Bar-Sagi, D., Lax, I. and Schlessinger, J., 1997. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway, Cell. 89: 693–702.PubMedCrossRefGoogle Scholar
  68. Krause, M., Bear, J.E., Loureiro, J.J. and Gertler, F.B., 2002. The Ena/VASP enigma, J Cell Sci. 115: 4721–4726.PubMedCrossRefGoogle Scholar
  69. Krause, M., Sechi, A.S., Konradt, M., Monner, D., Gertler, EB. and Wehland, J., 2000. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton, J Cell Biol. 149: 181–194.PubMedCrossRefGoogle Scholar
  70. Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J. and Hall, A., 2001. Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex, Curr Biol. 11: 1645–1655.PubMedCrossRefGoogle Scholar
  71. Kullander, K. and Klein, R., 2002. Mechanisms and functions of Eph and ephrin signalling, Nat Rev Mol Cell Biol. 3: 475–486.PubMedCrossRefGoogle Scholar
  72. Lamoureux, P., Altun-Gultekin, Z.F., Lin, C., Wagner, J.A. and Heidemann, S.R., 1997. Rac is required for growth cone function but not neurite assembly, J Cell Sci. 110 (Pt 5): 635–641.PubMedGoogle Scholar
  73. Lanier, L.M., Gates, M.A., Witke, W, Menzies, A.S., Wehman, A.M., Macklis, J.D., Kwiatkowski, D., Soriano, P. and Gertler, F.B., 1999. Mena is required for neurulation and commissure formation, Neuron. 22: 313–325.PubMedCrossRefGoogle Scholar
  74. Laux, T., Fukami, K., Thelen, M., Golub, T., Frey, D. and Caroni, P., 2000. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism, J Cell Biol. 149: 1455–1472.PubMedCrossRefGoogle Scholar
  75. Leeuwen, F.N., Kain, H.E., Kaminen, R.A., Michiels, E, Kranenburg, O.W. and Collard, J.G., 1997. The guanine nucleotide exchange factor Tiaml affects neuronal morphology; opposing roles for the small GTPases Rac and Rho, J Cell Biol. 139: 797–807.PubMedCrossRefGoogle Scholar
  76. Lewis, A.K. and Bridgman, P.C., 1992. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J Cell Biol. 119: 1219–1243.PubMedCrossRefGoogle Scholar
  77. Liang, X., Lu, Y, Neubert, T.A. and Resh, M.D., 2002. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species, J Biol Chem. 277: 33032–33040.PubMedCrossRefGoogle Scholar
  78. Lin, D., Gish, G.D., Songyang, Z. and Pawson, T., 1999. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif, JBiol Chem. 274: 3726–3733.CrossRefGoogle Scholar
  79. Little, E.B., Edelman, G.M. and Cunningham, B.A., 1998. Palmitoylation of the cytoplasmic domain of the neural cell adhesion molecule N-CAM serves as an anchor to cellular membranes, Cell Adhes Commun. 6: 415–430.PubMedCrossRefGoogle Scholar
  80. Liu, P., Ying, Y., Ko, Y.G. and Anderson, R.G., 1996. Localization of platelet-derived growthfactor-stimulated phosphorylation cascade to caveolae, JBiol Chem. 271: 10299–10303.CrossRefGoogle Scholar
  81. Machesky, L.M., 1997. Cell motility: complex dynamics at the leading edge, Curr Biol. 7: R164–167.PubMedCrossRefGoogle Scholar
  82. Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. and Narumiya, S., 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase, Science. 285: 895–898.PubMedCrossRefGoogle Scholar
  83. Magee, T., Pirinen, N., Adler, J., Pagakis, S.N. and Parmryd, I., 2002. Lipid rafts: cell surface platforms for T cell signaling, Biol Res. 35: 127–131.PubMedCrossRefGoogle Scholar
  84. Martel, V, Racaud-Sultan, C., Dupe, S., Marie, C., Paulhe, F., Galmiche, A., Block, M.R. and Albiges-Rizo, C., 2001. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides, JBiol Chem. 276: 21217–21227.CrossRefGoogle Scholar
  85. Martin, T.E, 2001. PI(4,5)P(2) regulation of surface membrane traffic, Curr Opin Cell Biol. 13: 493–499.PubMedCrossRefGoogle Scholar
  86. Martinez-Quiles, N., Rohatgi, R., Anton, I.M., Medina, M., Saville, S.P., Miki, H., Yamaguchi, H., Takenawa, T., Hartwig, J.H., Geha, R.S. and Ramesh, N., 2001. WIP regulatesN-WASP-mediated actin polymerization and filopodium formation, Nat Cell Biol. 3: 484–491.PubMedCrossRefGoogle Scholar
  87. Matsui, T., Yonemura, S. and Tsukita, S., 1999. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases, Curr Biol. 9: 1259–1262.PubMedCrossRefGoogle Scholar
  88. Mayor, S. and Maxfield, F.R., 1995. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment, Mol Biol Cell. 6: 929–944.PubMedGoogle Scholar
  89. McLaughlin, S. and Aderem, A., 1995. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions, Trends Biochem Sci. 20: 272–276.PubMedCrossRefGoogle Scholar
  90. McLaughlin, S., Wang, J., Gambhir, A. and Murray, D., 2002. PIP(2) and proteins: interac-tions, organization, and information flow, Annu Rev Biophys Biomol Struct. 31: 151–175.PubMedCrossRefGoogle Scholar
  91. Meberg, P.J., Ono, S., Minamide, L.S., Takahashi, M. and Bamburg, J.R., 1998. Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension, Cell Motil Cytoskeleton. 39: 172–190.PubMedCrossRefGoogle Scholar
  92. Meiri, K.F., Bickerstaff, L.E. and Schwob, J.E., 1991. Monoclonal antibodies show that kinase C phosphorylation of GAP-43 during axonogenesis is both spatially and temporally restricted in vivo, J Cell Biol. 112: 991–1005.PubMedCrossRefGoogle Scholar
  93. Meiri, K.F. and Burdick, D., 1991. Nerve growth factor stimulation of GAP-43 phosphorylation in intact isolated growth cones, JNeurosci. 11: 3155–3164.Google Scholar
  94. Meiri, K.F. and Gordon-Weeks, P.R., 1990. GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate and is a component of a membrane skeleton subcellular fraction, JNeurosci. 10: 256–266.Google Scholar
  95. Meyer, G. and Feldman, E.L., 2002. Signaling mechanisms that regulate actin-based motility processes in the nervous system, JNeurochem. 83: 490–503.CrossRefGoogle Scholar
  96. Miceli, M.C., Moran, M., Chung, C.D., Patel, V.P., Low, T. and Zinnanti, W, 2001. Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes, Semin Immunol. 13: 115–128.PubMedCrossRefGoogle Scholar
  97. Michel, F., Mangino, G., Attal-Bonnefoy, G., Tuosto, L., Alcover, A., Roumier, A., Olive, D. and Acuto, O., 2000. CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation, J Immunol. 165: 3820–3829.PubMedGoogle Scholar
  98. Mineo, C., James, G.L., Smart, E.J. and Anderson, R.G., 1996. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane, JBiol Chem. 271: 11930–11935.CrossRefGoogle Scholar
  99. Molina, I.J., Sancho, J., Terhorst, C., Rosen, F.S. and Remold-O’Donnell, E., 1993. T cells of patients with the Wiskott-Aldrich syndrome have a restricted defect in proliferative responses, Jlmmunol. 151: 4383–4390.Google Scholar
  100. Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M. and He, H.T., 1998 Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains, Embo J. 17: 5334–5348.PubMedCrossRefGoogle Scholar
  101. Moran, M. and Miceli, M.C., 1998. Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation, Immunity. 9: 787–796.PubMedCrossRefGoogle Scholar
  102. Mullins, R.D., Heuser, J.A. and Pollard, T.D., 1998. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments, Proc NatlAcad Sci USA. 95: 6181–6186.CrossRefGoogle Scholar
  103. Mutoh, T., Hamano, T., Tokuda, A. and Kuriyama, M., 2000. Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells), Glycoconj.1 17: 233–237.CrossRefGoogle Scholar
  104. Narumiya, S., Ishizaki, T. and Watanabe, N., 1997. Rho effectors and reorganization of actin cytoskeleton, FEBS Lett. 410: 68–72.PubMedCrossRefGoogle Scholar
  105. Neame, S.J., Uff, C.R., Sheikh, H., Wheatley, S.C. and Isacke, C.M., 1995. CD44 exhibits a cell type dependent interaction with triton X-100 insoluble, lipid rich, plasma membrane domains, J Cell Sci. 108 (Pt 9): 3127–3135.PubMedGoogle Scholar
  106. Nebl, T., Pestonjamasp, K.N., Leszyk, J.D., Crowley, J.L., Oh, S.W. and Luna, E.J., 2002. Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes, J Biol Chem. 277: 43399–43409.PubMedCrossRefGoogle Scholar
  107. Newsome, T.P, Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A. and Dickson, B.J., 2000. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila, Cell. 101: 283–294.PubMedCrossRefGoogle Scholar
  108. Niethammer, E, Delling, M., Sytnyk, V, Dityatev, A., Fukami, K. and Schachner, M., 2002. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis, JCell Biol. 157: 521–532.CrossRefGoogle Scholar
  109. Nobes, C.D. and Hall, A., 1995. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility, Biochem Soc Trans. 23: 456–459.PubMedGoogle Scholar
  110. Ohashi, K., Hosoya, T., Takahashi, K., Hing, H. and Mizuno, K., 2000. A Drosophila homolog of LIM-kinase phosphorylates cofilin and induces actin cytoskeletal reorganization, Biochem Biophys Res Commun. 276: 1178–1185.PubMedCrossRefGoogle Scholar
  111. Olofsson, B., 1999. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling, Cell Signal. 11: 545–554.PubMedCrossRefGoogle Scholar
  112. Oude Weernink, P.A., Schulte, P., Guo, Y., Wetzel, J., Amano, M., Kaibuchi, K., Haverland, S., Voss, M., Schmidt, M., Mayr, G.W. and Jakobs, K.H., 2000. Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase, JBiol Chem. 275: 10168–10174.CrossRefGoogle Scholar
  113. Paratcha, G., Ledda, E, Baars, L., Coulpier, M., Besset, V, Anders, J., Scott, R. and Ibanez, C.F., 2001. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts, Neuron. 29: 171–184.PubMedCrossRefGoogle Scholar
  114. Patterson, S.I. and Skene, J.H., 1999. A shift in protein S-palmitoylation, with persistence of growth-associated substrates, marks a critical period for synaptic plasticity in developing brain, J Neurobiol. 39: 423–437.PubMedCrossRefGoogle Scholar
  115. Porumb, T., Crivici, A., Blackshear, P.J. and Ikura, M., 1997. Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP), Eur Biophys J. 25: 239–247.PubMedCrossRefGoogle Scholar
  116. Prehoda, K.E., Scott, J.A., Mullins, R.D. and Lim, W.A., 2000. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex, Science. 290: 801–806.PubMedCrossRefGoogle Scholar
  117. Ramesh, N., Anton, I.M., Hartwig, J.H. and Geha, R.S., 1997. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells, Proc Natl Acad Sci USA. 94: 14671–14676.PubMedCrossRefGoogle Scholar
  118. Ridley, A.J. and Hall, A., 1992. Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho, Cold Spring Harb Symp Quant Biol. 57: 661–671.PubMedCrossRefGoogle Scholar
  119. Rodgers, W. and Zavzavadjian, J., 2001. Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton, Exp Cell Res. 267: 173–183.PubMedCrossRefGoogle Scholar
  120. Rosenblatt, J., Agnew, B.J., Abe, H., Bamburg, J.R. and Mitchison, T.J., 1997. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails, J Cell Biol. 136: 1323–1332.PubMedCrossRefGoogle Scholar
  121. Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R. and Anderson, R.G., 1992. Caveolin, a protein component of caveolae membrane coats, Cell. 68: 673–682.PubMedCrossRefGoogle Scholar
  122. Rozelle, A.L., Machesky, L.M., Yamamoto, M., Driessens, M.H., Insall, R.H., Roth, M.G., Luby-Phelps, K., Marriott, G., Hall, A. and Yin, H.L., 2000. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3, Curr Biol. 10: 311–320.PubMedCrossRefGoogle Scholar
  123. Salojin, K.V., Zhang, J. and Delovitch, T.L., 1999. TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1-/PAK-1/p38 MAPK signaling pathway, J Immunol. 163: 844–853.PubMedGoogle Scholar
  124. Sasaki, T. and Takai, Y., 1998. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control, Biochem Biophys Res Commun. 245: 641–645.PubMedCrossRefGoogle Scholar
  125. Scheffzek, K., Ahmadian, M.R. and Wittinghofer, A., 1998. GTPase-activating proteins: helping hands to complement an active site, Trends Biochem Sci. 23: 257–262. Schlessinger, J., 2000. Cell signaling by receptor tyrosine kinases, Cell. 103: 211–225.Google Scholar
  126. Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J. and Oh, P., 1995. Separation of caveolae from associated microdomains of GPI-anchored proteins, Science. 269: 1435–1439.PubMedCrossRefGoogle Scholar
  127. Sechi, A.S. and Wehland, J., 2000. The actin cytoskeleton and plasma membrane connection: Ptdlns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane, J Cell Sci. 113 (Pt 21): 3685–3695.Google Scholar
  128. Shamah, S.M., Lin, M.Z., Goldberg, J.L., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Neve, R.L., Corfas, G., Debant, A. and Greenberg, M.E., 2001. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin, Cell. 105: 233–244.PubMedCrossRefGoogle Scholar
  129. Shen, Y., Mani, S., Donovan, S.L., Schwob, J.E. and Meiri, K.F., 2002. Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system, J Neurosci. 22: 239–247.PubMedGoogle Scholar
  130. Simons, K. and Toomre, D., 2000. Lipid rafts and signal transduction, Nat Rev Mol Cell Biol. 1: 31–39.PubMedCrossRefGoogle Scholar
  131. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T. and Lisanti, M.P., 1999. Caveolins, liquid-ordered domains, and signal transduction, Mol Cell Biol. 19: 7289–7304.PubMedGoogle Scholar
  132. Snapper, S.B., Takeshima, E, Anton, I., Liu, C.H., Thomas, S.M., Nguyen, D., Dudley, D., Fraser, H., Punch, D., Lopez-Ilasaca, M., Klein, C., Davidson, L., Bronson, R., Mulligan, R.C., Southwick, E, Geha, R., Goldberg, M.B., Rosen, F.S., Hartwig, J.H. and Alt, F.W., 2001. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility, Nat Cell Biol. 3: 897–904.PubMedCrossRefGoogle Scholar
  133. Takenawa, T. and Itoh, T., 2001. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane, Biochim Biophys Acta. 1533: 190–206.PubMedCrossRefGoogle Scholar
  134. Tanimura, N., Nagafuku, M., Minaki, Y., Umeda, Y., Hayashi, E, Sakakura, J., Kato, A., Liddicoat, D.R., Ogata, M., Hamaoka, T. and Kosugi, A., 2003. Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation, J Cell Biol. 160: 125–135.PubMedCrossRefGoogle Scholar
  135. Tansey, M.G., Baloh, R.H., Milbrandt, J. and Johnson, E.M., Jr., 2000. GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival, Neuron. 25: 611–623.PubMedCrossRefGoogle Scholar
  136. Threadgill, R., Bobb, K. and Ghosh, A., 1997. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42, Neuron. 19: 625–634.PubMedCrossRefGoogle Scholar
  137. Tilghman, R W and Hoover, R.L., 2002. E-selectin and ICAM-1 are incorporated into detergent-insoluble membrane domains following clustering in endothelial cells, FEBS Lett. 525: 83–87.PubMedCrossRefGoogle Scholar
  138. Timasheff, S.N., 1995. Solvent stabilization of protein structure, Methods Mol Biol. 40: 253–269.PubMedGoogle Scholar
  139. Tolias, K. and Carpenter, C.L., 2000. In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac, Methods Enzymol. 325: 190–200.PubMedCrossRefGoogle Scholar
  140. Treanor, J.J., Goodman, L., de Sauvage, F., Stone, D.M., Poulsen, K.T., Beck, C.D., Gray, C., Armanini, M.P., Pollock, R.A., Hefti, E, Phillips, H.S., Goddard, A., Moore, M.W., BujBello, A., Davies, A.M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C.E. and Rosenthal, A., 1996. Characterization of a multicomponent receptor for GDNF, Nature. 382: 80–83.PubMedCrossRefGoogle Scholar
  141. Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., Mueller, S.C. and Zhan, X., 2001. Activation of Arp2/3 complex-mediated actin polymerization by cortactin, Nat Cell Biol. 3: 259–266.PubMedCrossRefGoogle Scholar
  142. Valensin, S., Paccani, S.R., Ulivieri, C., Mercati, D., Pacini, S., Patrussi, L., Hirst, T., Lupetti, P. and Baldari, C.T., 2002. F-actin dynamics control segregation of the TCR signaling cascade to clustered lipid rafts, Eur Jlmmunol. 32: 435–446.CrossRefGoogle Scholar
  143. van der Goot, F.G. and Harder, T., 2001. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack, Semin Immunol. 13: 89–97.PubMedCrossRefGoogle Scholar
  144. Veri, M.C., DeBell, K.E., Seminario, M.C., DiBaldassarre, A., Reischl, I., Rawat, R., Graham, L., Noviello, C., Rellahan, B.L., Miscia, S., Wange, R.L. and Bonvini, E., 2001. Membrane raft-dependent regulation of phospholipase Cgamma-1 activation in T lymphocytes, Mol Cell Biol. 21: 6939–6950.PubMedCrossRefGoogle Scholar
  145. Vetter, I.R. and Wittinghofer, A., 2001. The guanine nucleotide-binding switch in three dimensions, Science. 294: 1299–1304.PubMedCrossRefGoogle Scholar
  146. Villalba, M., Bi, K., Rodriguez, E, Tanaka, Y, Schoenberger, S. and Altman, A., 2001. Vavl/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells, J Cell Biol. 155: 331–338.PubMedCrossRefGoogle Scholar
  147. Viola, A., Schroeder, S., Sakakibara, Y. and Lanzavecchia, A., 1999. T lymphocyte costim-ulation mediated by reorganization of membrane microdomains, Science. 283: 680–682.PubMedCrossRefGoogle Scholar
  148. Wahl, S., Barth, H., Ciossek, T., Aktories, K. and Mueller, B.K., 2000. Ephrin-A5 inducescollapse of growth cones by activating Rho and Rho kinase, J Cell Biol. 149: 263–270.PubMedCrossRefGoogle Scholar
  149. Walsh, F.S., Meiri, K. and Doherty, P., 1997. Cell signalling and CAM-mediated neurite out-growth, Soc Gen Physiol Ser. 52: 221–226.PubMedGoogle Scholar
  150. Wange, R.L. and Samelson, L.E., 1996. Complex complexes: signaling at the TCR, Immunity. 5: 197–205.PubMedCrossRefGoogle Scholar
  151. Weaver, A.M., Karginov, A.V., Kinley, A.W., Weed, S.A., Li, Y, Parsons, J.T. and Cooper, J.A., 2001. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation, Curr Biol. 11: 370–374.PubMedCrossRefGoogle Scholar
  152. Welnhofer, E.A., Zhao, L. and Cohan, C.S., 1997. Actin dynamics and organization during growth cone morphogenesis in Helisoma neurons, Cell Motil Cytoskeleton. 37: 54–71.PubMedCrossRefGoogle Scholar
  153. Witke, W, Sharpe, A.H., Hartwig, J.H., Azuma, T., Stossel, T.P. and Kwiatkowski, D.J., 1995. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin, Cell. 81: 41–51.PubMedCrossRefGoogle Scholar
  154. Wong, K., Ren, X.R., Huang, Y.Z., Xie, Y., Liu, G., Saito, H., Tang, H., Wen, L., BradyKalnay, S.M., Mei, L., Wu, J.Y., Xiong, W.C. and Rao, Y., 2001. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway, Cell. 107: 209–221.PubMedCrossRefGoogle Scholar
  155. Wu, J., Motto, D.G., Koretzky, G.A. and Weiss, A., 1996. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation, Immunity. 4: 593–602.PubMedCrossRefGoogle Scholar
  156. Wulfing, C., Chien, Y.H. and Davis, M.M., 1999. Visualizing lymphocyte recognition, Immunol Cell Biol. 77: 186–187.PubMedCrossRefGoogle Scholar
  157. Xavier, R., Brennan, T., Li, Q., McCormack, C. and Seed, B., 1998. Membrane compartmentation is required for efficient T cell activation, Immunity. 8: 723–732.PubMedCrossRefGoogle Scholar
  158. Yamamoto, M., Hilgemann, D.H., Feng, S., Bito, H., Ishihara, H., Shibasaki,Y. and Yin, H.L., 2001. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells, J Cell Biol. 152: 867–876.Google Scholar
  159. Yamamoto, M., Toya, Y, Schwencke, C., Lisanti, M.P, Myers, M.G., Jr. and Ishikawa, Y, 1998. Caveolin is an activator of insulin receptor signaling, J Biol Chem. 273: 26962–26968.PubMedCrossRefGoogle Scholar
  160. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E. and Mizuno, K., 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Rae-mediated actin reorganization, Nature. 393: 809–812.PubMedCrossRefGoogle Scholar
  161. Yin, H.L. and Janmey, P.A., 2002. Phosphoinositide Regulation of the Actin Cytoskeleton, Annu Rev Physiol.Google Scholar
  162. Yonemura, S., Hirao, M., Doi, Y., Takahashi, N., Kondo, T. and Tsukita, S., 1998. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2, JCell Biol. 140: 885–895.CrossRefGoogle Scholar
  163. Zallen, J.A., Cohen, Y, Hudson, A.M., Cooley, L., Wieschaus, E. and Schejter, E.D., 2002. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila, JCell Biol. 156: 689–701.CrossRefGoogle Scholar
  164. Zebda, N., Bernard, O., Bailly, M., Welti, S., Lawrence, D.S. and Condeelis, J.S., 2000. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension, J Cell Biol. 151: 1119–1128.PubMedCrossRefGoogle Scholar
  165. Zhang, J., Shehabeldin, A., da Cruz, L.A., Butler, J., Somani, A.K., McGavin, M., Kozieradzki, I, dos Santos, A.O., Nagy, A., Grinstein, S., Penninger, J.M. and Siminovitch, K.A., 1999. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes, JExp Med. 190: 1329–1342.CrossRefGoogle Scholar
  166. Zhang, W, Sloan-Lancaster, J., Kitchen, J., Trible, R.P. and Samelson, L.E., 1998. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation, Cell. 92: 83–92.PubMedCrossRefGoogle Scholar
  167. Zhang, W, Trible, R.P. and Samelson, L.E., 1998. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation, Immunity. 9: 239–246.PubMedCrossRefGoogle Scholar
  168. Zhou, F.Q. and Cohan, C.S., 2001. Growth cone collapse through coincident loss of actin bundles and leading edge actin without actin depolymerization, J Cell Biol. 153: 1071–1084.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Karina F. Meiri
    • 1
  1. 1.Department of Anatomy and Cellular BiologyTufts University School of MedicineBostonUSA

Personalised recommendations