Lipid Composition of Membrane Domains

  • Kamen S. Koumanov
  • Claude Wolf
  • Peter J. Quinn
Part of the Subcellular Biochemistry book series (SCBI, volume 37)


The isolation of subfractions of cell membranes on the basis of their solubility in non-ionic detergents has led to the discovery of lipid domain structure in membranes. Detergents used for this purpose include Triton, Brij, Lubrol and CHAPS. Different lipid constituents are known to resist solubilization by different detergents and the resulting fractions may associate with different membrane proteins. In general, the detergent-resistant membrane fractions tend to be dominated by saturated molecular species of sphingomyelin and phosphatidylcholine and invariably include significant proportions of cholesterol. The lipid composition is consistent with formation of liquid-ordered phases. The present evidence favours a model in which the lateral segregation of membrane proteins takes place on the basis of their affinity for liquid-ordered lipid domains within the membrane.


Lipid Composition Lipid Raft Membrane Domain Membrane Raft Lipid Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, S. N., Brown, D. A. and London, E., 1997, On the origin of sphingolipid/cholesterolrich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes, Biochemistry, 36: 10944–10953.PubMedCrossRefGoogle Scholar
  2. Anderson, T. G. and McConnell, H. M., 2002, A thermodynamic model for extended complexes of cholesterol and phospholipid, Biophys J, 83: 2039–2052.PubMedCrossRefGoogle Scholar
  3. Bagnat, M., Keranen, S., Shevchenko, A. and Simons, K., 2000, Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast, Proc Natl Acad Sci USA, 97: 3254–3259.PubMedCrossRefGoogle Scholar
  4. Boesze-Battaglia, K., Dispoto, J. and Kahoe, M. A., 2002, Association of a photoreceptor-specific tetraspanin protein, ROM-1, with triton X-100-resistant membrane rafts from rod outer segment disk membranes, JBiol Chem, 277: 41843–41849.CrossRefGoogle Scholar
  5. Braccia, A., Villani, M, Immerdal, L., Niels-Christiansen, L. L., Nystrom, B. T., Hansen, G. H. and Danielsen, E. M., 2003, Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by “superrafts”, J Biol Chem, 278: 15679–15684.PubMedCrossRefGoogle Scholar
  6. Brown, D. A. and Rose, J. K., 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, 68: 533–544.PubMedCrossRefGoogle Scholar
  7. Bunnell, S. C., Diehn, M., Yaffe, M. B., Findell, P. R., Cantley, L. C. and Berg, L. J., 2000, Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade, JBiol Chem, 275: 2219–2230.CrossRefGoogle Scholar
  8. Daumas, E, Destainville, N., Millot, C., Lopez, A., Dean, D. and Salome, L., 2003, Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking, Biophys J, 84: 356–366.PubMedCrossRefGoogle Scholar
  9. Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., Thompson, N. L., Levi, M., Jacobson, K. and Grafton, E., 2001a, Lipid rafts reconstituted in model membranes, Biophys J, 80: 1417–1428.PubMedCrossRefGoogle Scholar
  10. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. and Jacobson, K., 2001b, Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers, Proc NatlAcad Sci USA, 98: 10642–10647.CrossRefGoogle Scholar
  11. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. and Jacobson, K., 2002, Relationship of lipid rafts to transient confinement zones detected by single particle tracking, Biophys J, 82: 274–284.PubMedCrossRefGoogle Scholar
  12. Drevot, P., Langlet, C., Guo, X. J., Bernard, A. M., Colard, O., Chauvin, J. P., Lasserre, R. and He, H. T., 2002, TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts, Embo J, 21: 1899–1908.PubMedCrossRefGoogle Scholar
  13. Drobnik, W, Borsukova, H., Boucher, A., Pfeiffer, A., Liebisch, G., Schutz, G. J., Schindler, H. and Schmitz, G., 2002, Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains, Traffic, 3: 268–278.PubMedCrossRefGoogle Scholar
  14. Gousset, K., Wolkers, W. E, Tsvetkova, N. M., Oliver, A. E., Field, C. L., Walker, N. J., Crowe, J. H. and Tablin, F., 2002, Evidence for a physiological role for membrane rafts in human platelets, J Cell Physiol, 190: 117–128.PubMedCrossRefGoogle Scholar
  15. Janes, P. W, Ley, S. C., Magee, A. I. and Kabouridis, R S., 2000, The role of lipid rafts in T cell antigen receptor (TCR) signalling, Semin Immunol, 12: 23–34.PubMedCrossRefGoogle Scholar
  16. Kirkpatrick, E H., Gordesky, S. E. and Marinetti, G. V, 1974, Differential solubilization of proteins, phospholipids, and cholesterol of erythrocyte membranes by detergents, Biochim BiophysActa, 345: 154–161.CrossRefGoogle Scholar
  17. Li, X. M., Momsen, M. M., Smaby, J. M., Brockman, H. L. and Brown, R. E., 2001, Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins, Biochemistry, 40: 5954–5963.PubMedCrossRefGoogle Scholar
  18. Madore, N., Smith, K. L., Graham, C. H., Jen, A., Brady, K., Hall, S. and Morris, R., 1999, Functionally different GPI proteins are organized in different domains on the neuronal surface, Embo J, 18: 6917–6926.PubMedCrossRefGoogle Scholar
  19. Mairhofer, M., Steiner, M., Mosgoeller, W, Prohaska, R. and Salzer, U., 2002, Stomatin is a major lipid-raft component of platelet alpha granules, Blood, 100: 897–904.PubMedCrossRefGoogle Scholar
  20. Moffett, S., Brown, D. A. and Linder, M. E., 2000, Lipid-dependent targeting of G proteins into rafts, JBiol Chem, 275: 2191–2198.CrossRefGoogle Scholar
  21. Montixi, C., Langlet, C., Bernard, A. M., Thimonier, J., Dubois, C., Wurbel, M. A., Chauvin, J. R, Pierres, M. and He, H. T., 1998, Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains, Embo J, 17: 5334–5348.PubMedCrossRefGoogle Scholar
  22. Parton, R. G., Molero, J. C., Floetenmeyer, M., Green, K. M. and James, D. E., 2002, Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes, JBiol Chem, 277: 46769–46778.CrossRefGoogle Scholar
  23. Radhakrishnan, A., Anderson, T. G. and McConnell, H. M., 2000, Condensed complexes, rafts, and the chemical activity of cholesterol in membranes, Proc Natl Acad Sci USA, 97: 12422–12427.PubMedCrossRefGoogle Scholar
  24. Roper, K., Corbeil, D. and Huttner, W. B., 2000, Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane, Nat Cell Biol, 2: 582–592.PubMedCrossRefGoogle Scholar
  25. Rouquette-Jazdanian, A. K., Pelassy, C., Breittmayer, J. P., Cousin, J. L. and Aussel, C., 2002, Metabolic labelling of membrane microdomains/rafts in Jurkat cells indicates the presence of glycerophospholipids implicated in signal transduction by the CD3 T-cell receptor, Biochem J, 363: 645–655.PubMedCrossRefGoogle Scholar
  26. Sakyo, T. and Kitagawa, T., 2002, Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains, Biochim BiophysActa, 1567: 165–175.CrossRefGoogle Scholar
  27. Schroeder, R. J., Ahmed, S. N., Zhu, Y., London, E. and Brown, D. A., 1998, Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositolanchored proteins by promoting the formation of detergent-insoluble ordered membrane domains, JBiol Chem, 273: 1150–1157.CrossRefGoogle Scholar
  28. Schutz, G. J., Kada, G., Pastushenko, V. P. and Schindler, H., 2000, Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy, Embo J, 19: 892–901.PubMedCrossRefGoogle Scholar
  29. Slimane, T. A., Trugnan, G., Van, I. S. C. and Hoekstra, D., 2003, Raft-mediated Trafficking of Apical Resident Proteins Occurs in Both Direct and Transcytotic Pathways in Polarized Hepatic Cells: Role of Distinct Lipid Microdomains, Mol Biol Cell, 14: 611–624.PubMedCrossRefGoogle Scholar
  30. Wang, T. Y., Leventis, R. and Silvius, J. R., 2001, Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes, Biochemistry, 40: 13031–13040.PubMedCrossRefGoogle Scholar
  31. Wang, T. Y. and Silvius, J. R., 2000, Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers, Biophys J, 79: 1478–1489.PubMedCrossRefGoogle Scholar
  32. Wang, T. Y. and Silvius, J. R., 2001, Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane, Biophys J, 81: 2762–2773.PubMedCrossRefGoogle Scholar
  33. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C. and London, E., 2001, Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide, JBiol Chem, 276: 33540–33546.CrossRefGoogle Scholar
  34. Xu, X. and London, E., 2000, The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation, Biochemistry, 39: 843–849.PubMedCrossRefGoogle Scholar
  35. Zubiaur, M., Fernandez, O., Ferrero, E., Salmeron, J., Malissen, B., Malavasi, F. and Sancho, J., 2002, CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/ protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs, JBiol Chem, 277: 13–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Kamen S. Koumanov
    • 1
    • 2
  • Claude Wolf
    • 2
  • Peter J. Quinn
    • 3
  1. 1.Institute of BiophysicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Faculte de Medecine Saint AntoineUniversite Pierre et Marie CurieParis Cedex 12France
  3. 3.Department of Life SciencesKing’s College LondonLondonUK

Personalised recommendations