Lipid Raft Proteins and Their Identification in T Lymphocytes

  • Bernd Wollscheid
  • Priska D. von Haller
  • Eugene Yi
  • Samuel Donohoe
  • Kelly Vaughn
  • Andrew Keller
  • Alexey I. Nesvizhskii
  • Jimmy Eng
  • Xiao-jun Li
  • David R. Goodlett
  • Ruedi Aebersold
  • Julian D. Watts
Part of the Subcellular Biochemistry book series (SCBI, volume 37)


This review focuses on how membrane lipid rafts have been detected and isolated, mostly from lymphocytes, and their associated proteins identified. These proteins include transmembrane antigens/receptors, GPI-anchored proteins, cytoskeletal proteins, Src-family protein kinases, G-proteins, and other proteins involved in signal transduction. To further understand the biology of lipid rafts, new methodological approaches are needed to help characterize the raft protein component, and changes that occur in this component as a result of cell perturbation. We describe the application of new proteomic approaches to the identification and quantification of raft proteins in T-lymphocytes. Similar approaches, applied to other model cell systems, will provide valuable new insights into both cellular signal transduction and lipid raft biology.


Lipid Raft Fluorescence Resonance Energy Transfer Membrane Raft Cholesterol Depletion ICAT Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, R., and Mann, M. [ 2003 ]. Mass spectrometry-based proteomics. Nature. 422: 198–207.PubMedCrossRefGoogle Scholar
  2. Anderson, R.G., and Jacobson, K. [ 2002 ]. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 296: 1821–1825.PubMedCrossRefGoogle Scholar
  3. Arcaro, A., Gregoire, C., Boucheron, N., Stotz, S., Palmer, E., Malissen, B., and Luescher, I.F. [ 2000 ]. Essential role of CD8 palmitoylation in CD8 coreceptor function. J Immunol. 165: 2068–2076.PubMedGoogle Scholar
  4. Babiychuk, E.B., and Draeger, A. [ 2000 ]. Annexins in cell membrane dynamics. Ca(2+)regulated association of lipid microdomains. J Cell Biol. 150: 1113–1124.PubMedCrossRefGoogle Scholar
  5. Balamuth, F., Leitenberg, D., Unternaehrer, J., Mellman, I., and Bottomly, K. [ 2001 ]. Distinct patterns of membrane microdomain partitioning in Thl and th2 cells. Immunity. 15: 729–738.PubMedCrossRefGoogle Scholar
  6. Bell, A.W., Ward, M.A., Blackstock, WP., Freeman, H.N., Choudhary, J.S., Lewis, A.P, Chotai, D., Fazel, A., Gushue, J.N., Paiement, J., Paley, S., Chevet, E., Lafreniere-Roula, M., Solari, R., Thomas, D.Y., Rowley, A., and Bergeron, J.J. [ 2001 ]. Proteomics characterization of abundant Golgi membrane proteins. JBiol Chem. 276: 5152–5165.CrossRefGoogle Scholar
  7. Bi, K., Tanaka, Y., Coudronniere, N., Sugie, K., Hong, S., van Stipdonk, M.J., and Altman, A. [ 2001 ]. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol. 2: 556–563.PubMedCrossRefGoogle Scholar
  8. Blagoev, B., Kratchmarova, I., Ong, S.E., Nielsen, M., Foster, L.J., and Mann, M. [ 2003 ]. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol. 21: 315–318.PubMedCrossRefGoogle Scholar
  9. Blanchard, J. [ 2000 ]. Small GTPases, adhesion, cell cycle control and proliferation. Pathologie et Biologie. 48 (3): 318–327.PubMedGoogle Scholar
  10. Blumenthal, R., Clague, M.J., Durell, S.R., and Epand, R.M. [ 2003 ]. Membrane fusion. Chem Rev. 103: 53–69.PubMedCrossRefGoogle Scholar
  11. Brdicka, T., Imrich, M., Angelisova, P., Brdickova, N., Horvath, O., Spicka, J., Hilgert, I., Luskova, P., Draber, P., Novak, E, Engels, N., Wienands, J., Simeon, L., Osterreicher, J., Aguado, E., Malissen, M., Schraven, B., and Horejsi, V. [ 2002 ]. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. JExp Med. 196: 1617–1626.CrossRefGoogle Scholar
  12. Brdicka, T., Pavlistova, D., Leo, A., Bruyns, E., Korinek, V, Angelisova, P., Scherer, J., Shevchenko, A., Hilgert, I., Cerny, J., Drbal, K., Kuramitsu, Y., Kornacker, B., Horejsi, V, and Schraven, B. [ 2000 ]. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. JExp Med. 191: 1591–1604.CrossRefGoogle Scholar
  13. Brdickova, N., Brdicka, T., Andera, L., Spicka, J., Angelisova, E, Milgram, S.L., and Horejsi, V [ 2001 ]. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 507: 133–136.PubMedCrossRefGoogle Scholar
  14. Brodsky, E, Chen, C., Knuehl, C., Towler, M., and Wakeham, D. [ 2001 ]. Biological basket weaving: Formation and function of clathrin-coated vesicles. Annual Review of Cell 888 Developmental Biology. 12: 517–568.CrossRefGoogle Scholar
  15. Brown, D. [ 1994 ]. GPI-anchored proteins and detergent-resistant membrane domains. Braz J Med Biol Res. 27: 309–315.PubMedGoogle Scholar
  16. Brown, D.A., Crise, B., and Rose, J.K. [ 1989 ]. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science. 245: 1499–1501.PubMedCrossRefGoogle Scholar
  17. Brown, D.A., and London, E. [ 1997 ]. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 240: 1–7.PubMedCrossRefGoogle Scholar
  18. Brown, D.A., and London, E. [ 2000 ]. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem. 275: 17221–17224.PubMedCrossRefGoogle Scholar
  19. Brown, D.A., and Rose, J.K. [ 1992 ]. Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell. 68: 533–544.PubMedCrossRefGoogle Scholar
  20. Brown, M.T., and Cooper, J.A. [ 1996 ]. Regulation, substrates and functions of src. Biochim Biophys Acta. 1287: 121–149.PubMedGoogle Scholar
  21. Bunnell, S.C., Kapoor, V, Trible, R.P., Zhang, W, and Samelson, L.E. [ 2001 ]. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity. 14: 315–329.PubMedCrossRefGoogle Scholar
  22. Carter, W.G., and Hakomori, S. [ 1981 ]. A new cell surface, detergent-insoluble glycoprotein matrix of human and hamster fibroblasts. The role of disulfide bonds in stabilization of the matrix. JBiol Chem. 256: 6953–6960.Google Scholar
  23. Chawla, M., and Vishwakarma, R.A. [ 2003 ]. Alkylacylglycerolipid domain of GPI molecules of Leishmania is responsible for inhibition of PKC-mediated c-fos expression. JLipid Res. 44: 594–600.CrossRefGoogle Scholar
  24. Das, V., Nal, B., Roumier, A., Meas-Yedid, V, Zimmer, C., Olivo-Marin, J.C., Roux, P, Ferrier, P, Dautry-Varsat, A., and Alcover, A. [ 2002 ]. Membrane-cytoskeleton interactions during the formation of the immunological synapse and subsequent T-cell activation. Immunol Rev. 189: 123–135.PubMedCrossRefGoogle Scholar
  25. Davidson, D., Bakinowski, M., Thomas, M.L., Horejsi, V, and Veillette, A. [ 2003 ]. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol. 23: 2017–2028.PubMedCrossRefGoogle Scholar
  26. Dermine, J.F., Duclos, S., Garin, J., St-Louis, F., Rea, S., Parton, R.G., and Desjardins, M. [ 2001 ]. Flotillin-l-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem. 276: 18507–18512.PubMedCrossRefGoogle Scholar
  27. Drake, D.R., 3rd, and Braciale, T.J. [ 2001 ]. Cutting edge: lipid raft integrity affects the efficiency of MHC class I tetramer binding and cell surface TCR arrangement on CD8+ T cells. Jlmmunol. 166: 7009–7013.Google Scholar
  28. Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R., and He, H.T. [ 2002 ]. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. Embo J. 21: 1899–1908.PubMedCrossRefGoogle Scholar
  29. Edidin, M. [ 2001 ] Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 11: 492–496.PubMedCrossRefGoogle Scholar
  30. Edmonds, S.D., and Ostergaard, H.L. [ 2002 ]. Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. J Immunol. 169: 5036–5042.PubMedGoogle Scholar
  31. Field, K.A., Holowka, D., and Baird, B. [ 1995 ]. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci USA. 92: 9201–9205.PubMedCrossRefGoogle Scholar
  32. Fivaz, M., Vilbois, E, Thurnheer, S., Pasquali, C., Abrami, L., Bickel, P.E., Parton, R.G., and van der Goot, F.G. [ 2002 ]. Differential sorting and fate of endocytosed GPI-anchored proteins. Embo J. 21: 3989–4000.PubMedCrossRefGoogle Scholar
  33. Flint, M., Quinn, E.R., and Levy, S. [ 2001 ]. In search of hepatitis C virus receptor(s). Clin Liver Dis. 5: 873–893.PubMedCrossRefGoogle Scholar
  34. Flory, M.R., Griffin, T.J., Martin, D., and Aebersold, R. [ 2002 ]. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 20: S23–29.PubMedCrossRefGoogle Scholar
  35. Foger, N., Marhaba, R., and Zoller, M. [ 2001 ]. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J Cell Sci. 114: 1169–1178.PubMedGoogle Scholar
  36. Ford, T., Graham, J., and Rickwood, D. [ 1994 ]. Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal Biochem. 220: 360–366.PubMedCrossRefGoogle Scholar
  37. Fragoso, R., Ren, D., Zhang, X., Su, M.W., Burakoff, S.J., and Jin, Y.J. [ 2003 ]. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. Jlmmunol. 170: 913–921.Google Scholar
  38. Friedrichson, T., and Kurzchalia, T.V. [ 1998 ]. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature. 394: 802–805.PubMedCrossRefGoogle Scholar
  39. Galbiati, F., Volonte, D., Meani, D., Milligan, G., Lublin, D.M., Lisanti, M.P., and Parenti, M. [ 1999 ]. The dually acylated NH2-terminal domain of gi1a is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo. JBiol Chem. 274: 5843–5850.CrossRefGoogle Scholar
  40. Gauld, S., Dal, P.J., and Cambier, J. [ 2002 ]. B cell antigen receptor signaling: Roles in cell development and disease. Science. 296: 1641–1642.PubMedCrossRefGoogle Scholar
  41. Goodlett, D.R., Keller, A., Watts, J.D., Newitt, R.,Yi, E.C., Purvine, S., Eng, J.K., von Haller, P., Aebersold, R., and Kolker, E. [ 2001 ]. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom. 15: 1214–1221.PubMedCrossRefGoogle Scholar
  42. Goodlett, D.R., and Yi, E.C. [ 2002 ]. Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis. Fund Integr Genomics. 2: 138–153.CrossRefGoogle Scholar
  43. Graham, J., Ford, T., and Rickwood, D. [ 1994 ]. The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal Biochem. 220: 367–373.PubMedCrossRefGoogle Scholar
  44. Guina, T., Purvine, S.O., Yi, E.C., Eng, J., Goodlett, D.R., Aebersold, R., and Miller, S.I. [ 2003 ]. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci USA. 100: 2771–2776.PubMedCrossRefGoogle Scholar
  45. Guo, Z., Turner, C., and Castle, D. [ 1998 ]. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell. 94: 537–548.PubMedCrossRefGoogle Scholar
  46. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. [ 1999 ]. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 17: 994–999.PubMedCrossRefGoogle Scholar
  47. Gygi, S.P., Rist, B., Griffin, T.J., Eng, J., and Aebersold, R. [ 2002 ]. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. JProteome Res. 1: 47–54.CrossRefGoogle Scholar
  48. Han, D.K., Eng, J., Zhou, H., and Aebersold, R. [ 2001 ]. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol. 19: 946–951.PubMedCrossRefGoogle Scholar
  49. Harder, T., Scheiffele, P., Verkade, P., and Simons, K. [ 1998 ]. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 141: 929–942.PubMedCrossRefGoogle Scholar
  50. Harris, J., Werling, D., Hope, J., Taylor, G., and Howard, C. [ 2002 ]. Caveolae and caveolin in immune cells: distribution and functions. Trends in Immunology. 23: 158–164.PubMedCrossRefGoogle Scholar
  51. Heller, M., Goodlett, D.R., Watts, J.D., and Aebersold, R. [ 2000 ]. A comprehensive characterization of the T-cell antigen receptor complex composition by microcapillary liquid chromatography-tandem mass spectrometry. Electrophoresis. 21: 2180–2195.PubMedCrossRefGoogle Scholar
  52. Henning, S., and Cantrell, D. [ 1998 ]. GTPases in Antigen Receptor Signalling. Current Opinion in Immunology. 10: 322–329.PubMedCrossRefGoogle Scholar
  53. Hilgemann, D.W., Feng, S., and Nasuhoglu, C. [2001]. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE. 2001:RE19.Google Scholar
  54. Hiscox, S., Hallett, M.B., Morgan, B.P., and van den Berg, C.W. [ 2002 ]. GPI-anchored GFP signals Cat+ but is homogeneously distributed on the cell surface. Biochem Biophys Res Commun. 293: 714–721.PubMedCrossRefGoogle Scholar
  55. Ikezawa, H. [ 2002 ]. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull. 25: 409–417.PubMedCrossRefGoogle Scholar
  56. Ikonen, E. [ 2001 ]. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol. 13: 470–477.PubMedCrossRefGoogle Scholar
  57. Itoh, K., Sakakibara, M., Yamasaki, S., Takeuchi, A., Arase, H., Miyazaki, M., Nakajima, N., Okada, M., and Saito, T. [ 2002 ]. Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J Immunol. 168: 541–544.PubMedGoogle Scholar
  58. Janes, P.W., Ley, S.C., and Magee, A.I. [ 1999 ]. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol. 147: 447–461.PubMedCrossRefGoogle Scholar
  59. Janes, P.W., Ley, S.C., Magee, A.I., and Kabouridis, P.S. [ 2000 ]. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 12: 23–34.PubMedCrossRefGoogle Scholar
  60. Janssen, E., Zhu, M., Zhang, W, and Koonpaew, S. [ 2003 ]. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat Immunol. 4: 117–123.PubMedCrossRefGoogle Scholar
  61. Kabouridis, P.S., Magee, A.I., and Ley, S.C. [ 1997 ]. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. Embo J. 16: 4983–4998.PubMedCrossRefGoogle Scholar
  62. Kamm, K., and Stull, J. [ 2001 ]. Dedicated myosin light chain kinases with diverse cellular functions. Journal of Biological Chemistry. 276: 4527–4530.PubMedCrossRefGoogle Scholar
  63. Kawabuchi, M., Satomi, Y., Takao, T., Shimonishi, Y., Nada, S., Nagai, K., Tarakhovsky, A., and Okada, M. [ 2000 ]. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 404: 999–1003.PubMedCrossRefGoogle Scholar
  64. Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. [ 2002 ]. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 74: 5383–5392.PubMedCrossRefGoogle Scholar
  65. Kenworthy, A.K., Petranova, N., and Edidin, M. [ 2000 ]. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell. 11: 1645–1655.PubMedGoogle Scholar
  66. Kosugi, A., Saitoh, S., Noda, S., Yasuda, K., Hayashi, E, Ogata, M., and Hamaoka, T. [ 1999 ]. Translocation of tyrosine-phosphorylated TCRzeta chain to glycolipid-enriched membrane domains upon T cell activation. Int Immunol. 11: 1395–1401.PubMedCrossRefGoogle Scholar
  67. Kovarova, M., Tolar, E, Arudchandran, R., Draberova, L., Rivera, J., and Draber, P. [ 2001 ]. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation. Mol Cell Biol. 21: 8318–8328.PubMedCrossRefGoogle Scholar
  68. Lehto, M.T., and Sharom, F.J. [ 2002 ]. PI-specific phospholipase C cleavage of a reconstituted GPI-anchored protein: modulation by the lipid bilayer. Biochemistry. 41: 1398–1408.PubMedCrossRefGoogle Scholar
  69. Liang, X., Nazarian, A., Erdjument-Bromage, H., Bornmann, W, Tempst, P., and Resh, M.D. [ 2001 ]. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. JBiol Chem. 276: 30987–30994.CrossRefGoogle Scholar
  70. Lisanti, M.P., Cams, l.W., Davitz, M.A., and Rodriguez-Boulan, E. [ 1989 ]. A glycophospho-lipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J Cell Biol. 109: 2145–2156.PubMedCrossRefGoogle Scholar
  71. Loertscher, R., and Lavery, P. [ 2002 ]. The role of glycosyl phosphatidyl inositol (GPI)-anchored cell surface proteins in T-cell activation. Transpl Immunol. 9: 93–96.PubMedCrossRefGoogle Scholar
  72. May, A.E, Misura, K.M., Whiteheart, S.W., and Weis, W.I. [ 1999 ]. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nat Cell Biol. 1: 175–182.PubMedCrossRefGoogle Scholar
  73. McGavin, M.K., Badour, K., Hardy, L.A., Kubiseski, T.J., Zhang, J., and Siminovitch, K.A. [ 2001 ]. The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)mediated actin polymerization to T cell antigen receptor endocytosis. J Exp Med. 194: 1777–1787.PubMedCrossRefGoogle Scholar
  74. Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G., and Brown, D.A. [ 1999 ]. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. JBiol Chem. 274: 3910–3917.CrossRefGoogle Scholar
  75. Miura, Y., Hanada, K., and Jones, T.L. [ 2001 ]. G(s) signaling is intact after disruption of lipid rafts. Biochemistry. 40: 15418–15423.PubMedCrossRefGoogle Scholar
  76. Mo, W, and Karger, B.L. [ 2002 ]. Analytical aspects of mass spectrometry and proteomics. Curr Opin Chem Biol. 6: 666–675.PubMedCrossRefGoogle Scholar
  77. Moffett, S., Brown, D.A., and Linder, M.E. [ 2000 ]. Lipid-dependent targeting of G proteins into rafts. JBiol Chem. 275: 2191–2198.CrossRefGoogle Scholar
  78. Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M., and He, H.T. [ 1998 ]. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. Embo J. 17: 5334–5348.PubMedCrossRefGoogle Scholar
  79. Moran, M., and Miceli, M.C. [ 1998 ] Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity. 9: 787–796.PubMedCrossRefGoogle Scholar
  80. Morris, A., and Malbon, C. [ 1999 ]. Physiological regulation of G protein-linked signaling. Physiological Reviews. 79: 1373–1430.PubMedGoogle Scholar
  81. Mukheijee, S., and Maxfield, F.R. [ 2000 ]. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic. 1: 203–211.CrossRefGoogle Scholar
  82. Mumby, S.M. [ 1997 ]. Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol. 9: 148–154.PubMedCrossRefGoogle Scholar
  83. Muniz, M., and Riezman, H. [ 2000 ]. Intracellular transport of GPI-anchored proteins. Embo J. 19: 10–15.PubMedCrossRefGoogle Scholar
  84. Nebl, T., Pestonjamasp, K.N., Leszyk, J.D., Crowley, J.L., Oh, S.W., and Luna, E.J. [ 2002 ]. Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. JBiol Chem. 277: 43399–43409.CrossRefGoogle Scholar
  85. Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. [2003]. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem., in press.Google Scholar
  86. Neves, S., Ram, P., and Iyengar, R. [ 2002 ]. G protein pathways. Science. 296: 1636–1639.PubMedCrossRefGoogle Scholar
  87. Nichols, B.J., Kenworthy, A.K., Polishchuk, R.S., Lodge, R., Roberts, T.H., Hirschberg, K., Phair, R.D., and Lippincott-Schwartz, J. [ 2001 ]. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol. 153: 529–541.PubMedCrossRefGoogle Scholar
  88. Niv, H., Gutman, O., Kloog, Y., and Henis, Y.I. [ 2002 ]. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol. 157: 865–872.PubMedCrossRefGoogle Scholar
  89. Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. [ 2002 ]. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 1: 376–386.PubMedCrossRefGoogle Scholar
  90. Patterson, S.D., and Aebersold, R.H. [2003]. Proteomics: the first decade and beyond. Nat Genet. 33 Suppl:311–323.Google Scholar
  91. Patton, W.F. [ 2002 ]. Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 771: 3–31.PubMedCrossRefGoogle Scholar
  92. Pike, L.J., Han, X., Chung, K.N., and Gross, R.W. [ 2002 ]. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry. 41: 2075–2088.PubMedCrossRefGoogle Scholar
  93. Pike, L.J., and Miller, J.M. [ 1998 ]. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 273: 22298–22304.PubMedCrossRefGoogle Scholar
  94. Pollard, T., and Beltzner, C. [ 2002 ]. Structure and function of the Arp2/3 complex. Current Opinion in Structural Biology, 2002 Dec. 12: 768–774.Google Scholar
  95. Pralle, A., Keller, P., Florin, E.L., Simons, K., and Horber, J.K. [ 2000 ]. Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 148: 997–1008.PubMedCrossRefGoogle Scholar
  96. Prior, I.A., and Hancock, J.F. [ 2001 ]. Compartmentalization of Ras proteins. J Cell Sci. 114: 1603–1608.PubMedGoogle Scholar
  97. Prior, I.A., Harding, A., Yan, J., Sluimer, J., Parton, R.G., and Hancock, J.F. [ 2001 ]. GTPdependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol. 3: 368–375.PubMedCrossRefGoogle Scholar
  98. Puri, V, Watanabe, R., Dominguez, M., Sun, X., Wheatley, C.L., Marks, D.L., and Pagano, R.E. [ 1999 ]. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol. 1: 386–388.PubMedCrossRefGoogle Scholar
  99. Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. [ 2003 ]. The study of macromolecular complexes by quantitative proteomics. Nat Genet. 33: 349–355.PubMedCrossRefGoogle Scholar
  100. Razani, B., Woodman, S., and Lisanti, M. [ 2002 ]. Caveolae: From cell biology to animal physiology. Pharmacological Reviews. 54: 431–467.PubMedCrossRefGoogle Scholar
  101. Ridley, A.J. [ 2001 ]. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11: 471–477.PubMedCrossRefGoogle Scholar
  102. Rodgers, W, and Zavzavadjian, J. [ 2001 ]. Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton. Exp Cell Res. 267: 173–183.PubMedCrossRefGoogle Scholar
  103. Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J.F., and Parton, R.G. [ 1999 ]. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol. 1: 98–105.PubMedCrossRefGoogle Scholar
  104. Rozelle, A.L., Machesky, L.M., Yamamoto, M., Driessens, M.H., Insall, R.H., Roth, M.G., Luby-Phelps, K., Marriott, G., Hall, A., and Yin, H.L. [ 2000 ]. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol. 10: 311–320.PubMedCrossRefGoogle Scholar
  105. Samelson, L.E., Bunnell, S.C., Trible, R.P., Yamazaki, T., and Zhang, W. [ 1999 ]. Studies on the adapter molecule LAT. Cold Spring Harb Symp Quant Biol. 64:259–263.Google Scholar
  106. Schlessinger, J. [2000]. New roles for Src kinases in control of cell survival and angiogenesis. Cell. 100:293–296.Google Scholar
  107. Shenoy-Scaria, A.M., Gauen, L.K., Kwong, J., Shaw, A.S., and Lublin, D.M. [ 1993 ]. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p561ck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol. 13: 6385–6392.PubMedGoogle Scholar
  108. Shevchenko, A., Chernushevich, I., Ens, W, Standing, K.G., Thomson, B., Wilm, M., and Maim, M. [ 1997 ]. Rapid `de novo’ peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 11: 1015–1024.PubMedCrossRefGoogle Scholar
  109. Shields, J.M., Pruitt, K., McFall, A., Shaub, A., and Der, C.J. [ 2000 ]. Understanding Ras: `it ain’t over ‘til it’s over’. Trends Cell Biol. 10: 147–154.PubMedCrossRefGoogle Scholar
  110. Shiio, Y., Donohoe, S., Yi, E.C., Goodlett, D.R., Aebersold, R., and Eisenman, R.N. [ 2002 ]. Quantitative proteomic analysis of Myc oncoprotein function. Embo J. 21: 5088–5096.PubMedCrossRefGoogle Scholar
  111. Silvie, O., Rubinstein, E., Franetich, J.F., Prenant, M., Belnoue, E., Renia, L., Hannoun, L., Eling, W, Levy, S., Boucheix, C., and Mazier, D. [ 2003 ]. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med. 9: 93–96.PubMedCrossRefGoogle Scholar
  112. Simons, K., and Ikonen, E. [ 1997 ]. Functional rafts in cell membranes. Nature. 387: 569–572.PubMedCrossRefGoogle Scholar
  113. Simons, K., and Toomre, D. [ 2000 ]. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 1: 31–39.PubMedCrossRefGoogle Scholar
  114. Simons, K., and van Meer, G. [ 1988 ]. Lipid sorting in epithelial cells. Biochemistry. 27: 6197–6202.PubMedCrossRefGoogle Scholar
  115. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., and Lisanti, M.P. [ 1999 ]. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 19: 7289–7304.PubMedGoogle Scholar
  116. Stewart, II, Thomson, T., and Figeys, D. [2001]. 180 labeling: a tool for proteomics. Rapid Commun Mass Spectrom. 15:2456–2465.Google Scholar
  117. Stuermer, C.A., Lang, D.M., Kirsch, E, Wiechers, M., Deininger, S.O., and Plattner, H. [ 2001 ]. Glycosylphosphatidyl inositol-anchored proteins and Fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell. 12: 3031–3045.PubMedGoogle Scholar
  118. Stulnig, T.M., Huber, J., Leitinger, N., Imre, E.M., Angelisova, E, Nowotny, P., and Waldhausl, W. [ 2001 ]. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. JBiol Chem. 276: 37335–37340.CrossRefGoogle Scholar
  119. Superti-Furga, G. [ 1995 ]. Regulation of the Src protein tyrosine kinase. FEBS Lett. 369: 62–66.PubMedCrossRefGoogle Scholar
  120. Takuwa, N., and Takuwa, Y. [ 2001 ]. Regulation of cell cycle molecules by the Ras effector system. [2001] Molecular 888 Cellular Endocrinology. 177 (1–2): 25–33.CrossRefGoogle Scholar
  121. Tao, W.A., and Aebersold, R. [ 2003 ]. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol. 14: 110–118.PubMedCrossRefGoogle Scholar
  122. Thomas, J.L., Holowka, D., Baird, B., and Webb, W.W. [ 1994 ]. Large-scale co-aggregation ofGoogle Scholar
  123. fluorescent lipid probes with cell surface proteins. J Cell Biol. 125:795–802.Google Scholar
  124. Thomas, M.L. [ 1999 ]. The regulation of antigen-receptor signaling by protein tyrosine phosphatases: a hole in the story. Curr Opin Immunol. 11: 270–276.PubMedCrossRefGoogle Scholar
  125. Thomas, S.M., and Brugge, J.S. [ 1997 ]. Cellular functions regulated by Src family kinases. Annu Rev Cell Dey Biol. 13: 513–609.CrossRefGoogle Scholar
  126. Tseng, S.Y., and Dustin, M.L. [ 2002 ]. T-cell activation: a multidimensional signaling network. Curr Opin Cell Biol. 14: 575–580.PubMedCrossRefGoogle Scholar
  127. Berg, C.W., Cinek, T., Hallett, M.B., Horejsi, V, and Morgan, B.P. [ 1995 ]. Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol. 131: 669–677.PubMedCrossRefGoogle Scholar
  128. Varma, R., and Mayor, S. [ 1998 ]. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 394: 798–801.PubMedCrossRefGoogle Scholar
  129. Haller, P.D., Donohoe, S., Goodlett, D.R., Aebersold, R., and Watts, J.D. [ 2001 ]. Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics. 1: 1010–1021.CrossRefGoogle Scholar
  130. Haller, ED., Yi, E., Donohoe, S., Vaughn, K., Keller, A., Nesvizhskii, A.I., Eng, J., Li, X., Goodlett, D.R., Aebersold, R., and Watts, J.D. [ 2003 ]. Evaluation of ICAT and tandem mass spectrometry methodologies for large scale protein analysis and the application of statistical modeling approaches for data interpretation. Submitted.Google Scholar
  131. Waheed, A.A., and Jones, T.L. [ 2002 ]. Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. JBiol Chem. 277: 32409–32412.CrossRefGoogle Scholar
  132. Wang, S., and Regnier, F.E. [ 2001 ]. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J Chromatogr A. 924: 345–357.PubMedCrossRefGoogle Scholar
  133. Wang, X.M., Djordjevic, J.T., Bender, V., and Manolios, N. [ 2002 ]. T cell antigen receptor (TCR) transmembrane peptides colocalize with TCR, not lipid rafts, in surface membranes. Cell Immunol. 215: 12–19.PubMedCrossRefGoogle Scholar
  134. Wedegaertner, P.B., Wilson, P.T., and Bourne, H.R. [ 1995 ]. Lipid modifications of trimeric G proteins. J Biol Chem. 270: 503–506.PubMedCrossRefGoogle Scholar
  135. Wherlock, M., and Mellor, H. [ 2002 ]. The Rho GTPase family: a Racs to Wrchs story. J Cell Sci. 115: 239–240.PubMedGoogle Scholar
  136. Williams, J.C., Wierenga, R.K., and Saraste, M. [ 1998 ]. Insights into Src kinase functions: structural comparisons. Trends Biochem Sci. 23: 179–184.PubMedCrossRefGoogle Scholar
  137. Wu, M., Fan, J., Gunning, W, and Ratnam, M. [ 1997 ]. Clustering of GPI-anchored folate receptor independent of both cross-linking and association with caveolin. J Membr Biol. 159: 137–147.PubMedCrossRefGoogle Scholar
  138. Xavier, R., Brennan, T., Li, Q., McCormack, C., and Seed, B. [ 1998 ]. Membrane compartmentation is required for efficient T cell activation. Immunity. 8: 723–732.PubMedCrossRefGoogle Scholar
  139. Zhang, W, Trible, R.P., and Samelson, L.E. [ 1998 ]. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 9: 239–246.PubMedCrossRefGoogle Scholar
  140. Zhang, W, Trible, R.P., Zhu, M., Liu, S.K., McGlade, C.J., and Samelson, L.E. [ 2000 ]. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem. 275: 23355–23361.PubMedCrossRefGoogle Scholar
  141. Zhou, H., Ranish, J.A., Watts, J.D., and Aebersold, R. [ 2002 ]. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol. 20: 512–515.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Bernd Wollscheid
    • 1
  • Priska D. von Haller
    • 1
  • Eugene Yi
    • 1
  • Samuel Donohoe
    • 1
  • Kelly Vaughn
    • 1
  • Andrew Keller
    • 1
  • Alexey I. Nesvizhskii
    • 1
  • Jimmy Eng
    • 1
  • Xiao-jun Li
    • 1
  • David R. Goodlett
    • 1
  • Ruedi Aebersold
    • 1
  • Julian D. Watts
    • 1
  1. 1.Institute for Systems BiologySeattleUSA

Personalised recommendations