G-Protein Regulation of Polyphosphoinositide Breakdown in B Cells

  • G. G. B. Klaus
  • M. M. Harnett
  • K. P. Rigley


It is now well-established that antigen receptors on both T and B lymphocytes belong to the large group of widely distributed Ca2+-mobilizing receptors. In other words, crosslinking of these receptors by anti-receptor antibodies, or antigens, activates a polyphosphoinositide-specific phosphodiesterase (PPI-PDE), whose primary substrate is phosphatidyl-inositol 4,5 bisphosphate (PIP2). This is broken down to inositol 1,4,5-trisphosphate (IP3) and 1,2 diacylglycerol. IP3 causes the release of Ca2+ from intracellular stores, and diacylglycerol is an essential co-factor for the Ca2+ and phospholipid dependent protein kinase C (PKC). In B cells, as in many other cell types, both arms of this branched signalling pathway are required to generate an optimal biological response, in this case activation of resting cells into the cell cycle: this has been demonstrated by the synergistic effects of Ca2+ ionophores and PKC-activating phorbol esters in inducing DNA synthesis in both human and murine B cells. Recent reviews on signalling by surface immunoglobulin (sIg) receptors on B cells can be found in refs. 1 and 2.


Cholera Toxin Pertussis Toxin Inositol Phosphate Intact Antibody Phospholipid Dependent Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Cambier, L. B. Justement, M.K. Newell, Z. Z. Chen, L. K. Harris, V. Sandoval, M. J. Klemsz and J. T. Ransom, Immunol. Rev 95: 37 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    G. G. B. Klaus, M. K. Bijsterbosch, A. O’Garra, M. M. Harnett and K. P. Rigley, Immunol. Rev 99: 19 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    A. G. Gilman, Cell 36: 577 (1984).CrossRefGoogle Scholar
  4. 4.
    S. Cockcroft, Trends Biochem. Sci 12: 75 (1987).CrossRefGoogle Scholar
  5. 5.
    M. M. Harnett and G. G. B. Klaus, J. Immunol 140: 3135 (1988).PubMedGoogle Scholar
  6. 6.
    N. E. Phillips and D. C. Parker, J. Immunol 132: 627 (1984).PubMedGoogle Scholar
  7. 7.
    G. G. B. Klaus, C. M. Hawrylowicz, M. Holman and K. D. Keeler, Immunology 53: 693 (1984).PubMedGoogle Scholar
  8. 8.
    M. K. Bijsterbosch and G. G. B. Klaus, J. Exp. Med 162: 1825 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    G. G. B. Klaus, K. Vondy and M. Holman, Eur. J. Immunol 17: 1787 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Mizuguchi, M. A. Beavan, J. H. Li and W. E. Paul, Proc. Nat. Acad. Sci. USA 83: 4474 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    M. K. Bijsterbosch and G. G. B. Klaus, Eur. J. Immunol 17: 113 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Pfeilschifter and C. Bauer, Biochem. J 248: 209 (1987).PubMedGoogle Scholar
  13. 13.
    A. K. Abbas and E. R. Unanue, J. Immunol 115: 1665 (1975).PubMedGoogle Scholar
  14. 14.
    M. J. Wakelam, S. A. Davies and M. D. Houslay, Nature 323: 173 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    N. R. St.C. Sinclair and A. Panaskoltsis, Immunol. Today 8: 76 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • G. G. B. Klaus
    • 1
  • M. M. Harnett
    • 1
  • K. P. Rigley
    • 1
  1. 1.National Institute for Medical ResearchLondonUK

Personalised recommendations