Skip to main content

Magnetron Sputtered TiNiCu Shape Memory Alloy Thin Film for MEMS Applications

  • Chapter
Materials & Process Integration for MEMS

Part of the book series: Microsystems ((MICT,volume 9))

  • 343 Accesses

Abstract

TiNiCu films were successfully prepared by co-sputtering of a TiNi target and a separate Cu target. Surface and cross-section microstructures of the deposited coating were analysed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Results showed that the deposited coating had fine grain size of about 300 to 400 nm and fully martensitic structure under room temperature. X-Ray Photoelectron Spectroscopy (XPS) indicated that there was an adherent and stable TiO2 oxide film on TiNiCu film surface, which can prevent Ni element from delamination. The deposited TiNiCu film has relatively strong (11 1) and (111) and relatively weak (010) texture. Results from Differential Scanning Calorimeter (DSC), in-situ X-Ray Diffraction (XRD) and curvature measurement revealed clearly martensitic transformation of the deposited TiNiCu films upon heating and cooling. Freestanding TiNiCu thin film showed clearly pronounced “two-way” shape memory effect, which is quite applicable to develop thin film micro-actuators. By depositing TiNi films on the bulk micromachined Si cantilever structures, micro-beams exhibiting good shape-memory effect were obtained. This type of cantilever structure can be further fabricated as a micro-gripper which can be used as the end-manipulator for micro-assembly in industry, minimally invasive surgery for medical application, and handling of small particles in hazardous environment for military application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Wayman, Maternsite transformation and shape memory alloys. Progress in Materials Science, 1992; 36: 203.

    Article  CAS  Google Scholar 

  2. H. Funakubo, Shape Memory Alloys. Gordon and British Science Publishers, 1987.

    Google Scholar 

  3. T. W. Duerig, K.N. Melton, D. Stöckel and C. M. Wayman, Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann Ltd., 1990.

    Google Scholar 

  4. H. Kahn, M. A. Huff and A. H. Heuer. TiNi shape-memory alloy and its applications for MEMS. J. Micromech. Microeng., 1998; 8: 213.

    Article  CAS  Google Scholar 

  5. Z. G. Wei, R. Sandstorm and S. Miyazaki. Shape-memory materials and hybrid composites for smart systems. J. Mater. Sci., 1998; 33: 3743.

    Article  CAS  Google Scholar 

  6. R. H. Wolf and A. H. Heuer. TiNi (shape-memory) films on silicon for MEMS applications. Journal of Microelectromechanical Systems, 1995; 4: 206.

    Article  CAS  Google Scholar 

  7. L. Benard, H. Kahn, A. H. Heuer and M. A. Huff. Thin-film shape-memory alloy actuated micropumps. J. of MEMS, 1998; 7: 245.

    Article  CAS  Google Scholar 

  8. P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton and M. A. M. A. Northrup. Thin film shape memory alloy microactuators. Journal of Microelectromechanical Systems, 1996; 5: 270.

    Article  CAS  Google Scholar 

  9. S. Miyazaki, T. Hashinnaga and A. Ishida. Sputtering deposited Ti rich TiN shape memory alloys. Thin Solid Films, 1996; 281–282, 364.

    Google Scholar 

  10. E. Quandt, C. Halene, H. Holleck, K. Feit, M. Kohl, P. Schloßmacher, A. Skokan and K.D. Skrobanek. Sputter deposition of TiNi, TiNiPd and TiPd films displaying the two-way shape-memory effect. Sensors and Actuators, 1996; A 53: 434.

    Google Scholar 

  11. T. Matsunaga, S. Kajiwara, K. Ogawa, T. Kikuchi and S. Miyazaki. High-strength Ti-Ni based shape-memory thin films Mater. Sci. Engng. A., 1999; 273–275, 745.

    Google Scholar 

  12. J. L. Seguin, M. Bendahan, A. Isalgue, V. Esteve-Cano, H. Carchano and V. Torra. Low-temperature crystallised Ti-riched NiTi shape memory films for microactuators. Sensors and Actuators A, 1999; 74: 65.

    Article  CAS  Google Scholar 

  13. K. K. Ho and G. P. Carman. Sputter deposition of NiTi shape memory alloy using a heated target. Thin Solid Films, 2000; 370: 18.

    Article  CAS  Google Scholar 

  14. T. Lehnert, H. Grimmer, P. Boni, M. Horisberger and R. Gotthardt. Characterisation of shape-memory alloy thin films made up from sputter-deposited Ni/Ti multilayers. Acta Mater., 2000; 48: 4065.

    Article  CAS  Google Scholar 

  15. Ohta, S. Bhansali, I. Kishimoto and A. Umeda. Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets. Sensors and Actuators, 2000; 86: 165.

    Article  CAS  Google Scholar 

  16. K. N. Melton. Ni-Ti based shape memory alloys. In Engineering Aspects of Shape-Memory Alloys, T. W. Duerig, K. N. Melton, D. Stockel and C. M. Wayman, Eds. London, U. K. Butterworth-Heinemann; 1990, 23.

    Google Scholar 

  17. L. Chang and D. S. Grummon. Self-accomodation mechanisms for orthorhombic martensite formation in sputtered thin films of thermoelastic Ti(NiCu). Scripta Met., 1991; 25: 2079.

    Google Scholar 

  18. A. Ishida and S. Miyazaki. Microstructure and mechanical properties of sputter-deposited Ti-Ni alloy thin films. Transactions of the ASME, 1999; 121: 2.

    Article  CAS  Google Scholar 

  19. S. Miyazaki and A. Ishida. Martensitic transformation and shape memory behaviour in sputtered TiNi-base thin films Mater. Sci. Engng. A, 1999; 273–275, 106.

    Google Scholar 

  20. Walles, L. Change and D. S. Grummon. Stress evolution in sputter deposited Ti-Ni films. Mat. Res. Soc. Symp. Proc., 1992, 246: 349.

    Article  CAS  Google Scholar 

  21. Grummon. Fabrication, microstructure and stress effects in sputtered TiNi thin films. Materials Science Forum, 2000; 327–328, 295.

    Google Scholar 

  22. P. Krulevitch, P. B. Ramsey, D. M. Makowiechi, A. P. Lee, M. A. Northrup and G. C. Johnson. Mixed-sputter deposition of Ni-Ti-Cu shape memory films. Thin Solid Films, 1996; 274: 101.

    Article  CAS  Google Scholar 

  23. P. Filip, J. Lausmaa, J. Musialek and K. Mazanec. Structure and surface of TiNi human implants. Biomaterials, 2001; 32: 2131.

    Google Scholar 

  24. S. M. Green, D. M. Grant and J. V. Wood. XPS characterisation of surface modified NiTi shape memory alloy. Mater. Sci. Engng., A, 1997; 224: 21.

    Article  Google Scholar 

  25. Y. Q. Fu, W.M. Huang, H. J. Du and X. Huang. Characterisation of TiNi shape-memory alloy thin film for MEMS application. Surface and Coatings Technology, 2001; 145: 107.

    Article  CAS  Google Scholar 

  26. T.W. Duerig and C. M. Wayman. An introduction to martensite and shape memory. In T.W. Durerig, K. N. Melton, D. Stockel and C. M. Wayman (eds.), Engineering Aspects of Shape-Memory Alloys, Butterworth-Heinemann, London, 1990; 3.

    Google Scholar 

  27. A.L. Mckelvey and R.O. Ritchie. On the temperature dependence of the superelastic strength and the prediction of the theoretical uniaxial transformation strain in Nitinol. Philosophical Magazine A, 2000; 80: 1759.

    Article  CAS  Google Scholar 

  28. J. Perkins and R.O. Sponholz. Two-way shape memory effect in TiNi alloys by thermal treatment. Metall. Trans. A, 1984; 15 A:313.

    Google Scholar 

  29. A. Ishida, M. Sato and S. Miyazaki. Mechanical properties of Ti-Ni shape memory thin films formed by sputtering. Mater. Sci. Engng., A, 1999; 273–275, 754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fu, Y., Du, H. (2002). Magnetron Sputtered TiNiCu Shape Memory Alloy Thin Film for MEMS Applications. In: Tay, F.E.H. (eds) Materials & Process Integration for MEMS. Microsystems, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5791-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5791-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5303-2

  • Online ISBN: 978-1-4757-5791-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics