Exactly Solvable Models

  • Gerald D. Mahan
Part of the Physics of Solids and Liquids book series (PSLI)


Every many-body theorist should be knowledgeable about the available exactly solvable models. First, there are not many of them. Second, they are useful for gaining insight into many-particle systems. If the problem to be solved can be related to an exactly solvable one, however vaguely, one can usually gain some insight.


Spectral Function Solvable Model Density Operator Bethe Lattice Boson Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranovich, V. M., Soy. Phys. JETP 10, 307 (1960)Google Scholar
  2. Agranovich, V. M., Soy. Phys. Solid State 3, 592 (1961).Google Scholar
  3. Almbladh, C. O., and P. Minnt-Jagen, Phys. Rev. B 17, 929 (1978).ADSCrossRefGoogle Scholar
  4. Anderson, P. W, Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  5. Anderson, P. W, and W. L. Mcmillan, in Theory of Magnetism in Transition Metals, Course XXXVII, Enrico Fermi International School of Physics, Varenna, ed. W. Marshall (Academic Press, New York, 1967), pp. 50–86. Baxter, R. J., Exactly Solved Models in Statistical Mechanics ( Academic, New York, 1982 ).Google Scholar
  6. Born, M., and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954); see Fig. 18a on p. 91.Google Scholar
  7. Brinkman, W E, and T. M. Rice, Phys. Rev. B 2, 1324 (1970).ADSCrossRefGoogle Scholar
  8. Brueckner, K. A., C. A. Levinson, and H. M. Mahmoud, Phys. Rev. 95, 217 (1954).ADSMATHCrossRefGoogle Scholar
  9. Cini, M., and A. Dandrea, J Phys. C 21, 193 (1988).ADSCrossRefGoogle Scholar
  10. Cohen, M. H., and F. Keefer, Phys. Rev. 99, 1128 (1955).ADSMATHCrossRefGoogle Scholar
  11. Davydov, A. S., Theory of Molecular Excitons ( Plenum, New York, 1971 ).Google Scholar
  12. Dewitt, B. S., Phys. Rev. 103, 1565 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  13. Dietz, R. E., D. G. Thomas, and J. J. Hopfield, Phys. Rev. Lett. 8, 391 (1962).ADSCrossRefGoogle Scholar
  14. Edwards, S. E, Philos. Mag. 33, 1020 (1958).ADSCrossRefGoogle Scholar
  15. Engelsberg, S., and B. B. Varga, Phys. Rev. 136, A1582 (1964).MathSciNetADSCrossRefGoogle Scholar
  16. Fano, U., Phys. Rev. 103, 1202 (1956)ADSCrossRefGoogle Scholar
  17. Fano, U., Phys. Rev. 118, 451 (1960).MathSciNetADSCrossRefGoogle Scholar
  18. Fano, U., Phys. Rev. 124, 1866 (1961).ADSMATHCrossRefGoogle Scholar
  19. Feynman, R. E, Phys. Rev. 84, 108 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  20. Friedel, J., Philos. Mag. 43, 153 (1952)MATHGoogle Scholar
  21. Friedel, J., Adv. Phys. 3, 446 (1953).ADSCrossRefGoogle Scholar
  22. Fukuda, N., and R. G. Newton, Phys. Rev. 103, 1558 (1956).ADSMATHCrossRefGoogle Scholar
  23. Fumi, F. G., Philos. Mag. 46, 1007 (1955).Google Scholar
  24. Heeger, A., in Chemistry and Physics of One-Dimensional Metals, ed. H. J. Keller ( Plenum, New York, 1977 ), pp. 87–135.CrossRefGoogle Scholar
  25. Henry C. H., and J. J. Hopfield, Phys. Rev. Lett. 15, 964 (1965).ADSCrossRefGoogle Scholar
  26. Hopfield, J. J., Phys. Rev. 112, 1555 (1958).ADSMATHCrossRefGoogle Scholar
  27. Kohn, W, and J. M. Luttinger, Phys. Rev. 108, 590 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  28. Langer, J. S., and V Ambegaokar, Phys. Rev. 121, 1090 (1961).ADSMATHCrossRefGoogle Scholar
  29. Lieb, E. H., and D. C. Mattis, Mathematical Physics in One Dimension (Academic Press, New York, 1966) Chap. 4.Google Scholar
  30. Luther, A., and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).ADSCrossRefGoogle Scholar
  31. Luther, A., and I. Peschel, Phys. Rev. B 9, 2911 (1974).ADSCrossRefGoogle Scholar
  32. Luttinger, J. M., J Math. Phys. N. Y 4, 1154 (1963).MathSciNetADSCrossRefGoogle Scholar
  33. Mahan, G. D., in Electronics Structure of Polymers and Molecular Crystals, eds. J. M. Andre and J. Ladik ( Plenum Press, New York, 1975 ), pp. 79–158.Google Scholar
  34. Mahan, G. D., and F. H. Claro, Phys. Rev. B 16, 1168 (1977).ADSCrossRefGoogle Scholar
  35. Mattis, D. C., The Many-Body Problem ( World Scientific, Singapore, 1993 ).MATHCrossRefGoogle Scholar
  36. Mattis, D. C., and E. H. Lieb, J. Math. Phys. 6, 304 (1965).MathSciNetADSCrossRefGoogle Scholar
  37. Overhauser, A. W, Physics 1, 307 (1965).Google Scholar
  38. Schönhammer, K., and O. Gunnarsson, Solid State Commun. 23, 691 (1977).ADSCrossRefGoogle Scholar
  39. Schweber, S. S., Relativistic Quantum Field Theory ( Harper and Row, New York, 1961 ).Google Scholar
  40. Tomonaga, S., Prog. Theor. Phys. (Kyoto) 5, 544 (1950).MathSciNetADSCrossRefGoogle Scholar
  41. Haeringen, W, Phys. Rev 137, A1902 (1965).CrossRefGoogle Scholar
  42. Williams, E. E., and M. H. Hebb, Phys. Rev 84, 1181 (1951).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations