Advertisement

Superfluids

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Helium has two common isotopes, 3He and 4He. Each isotope can be separated and a liquid formed at low temperatures which is nearly pure 3He or pure 4He. Each has unusual properties and displays collective behavior of a unique character. The boson liquid 4He shows a phase transition at T λ = 2.172 K to a superfluid state which is similar to Bose—Einstein condensation, although vastly modified by the strong interparticle interactions Similarly, the fermion liquid 3He develops a Fermi distribution at low temperature, and the particles have a superfluid transition which is similar to the superconducting transition in a metal. Of course, now it is occurring in a liquid, of electrically neutral atoms, so there is no Meissner effect, but there is pairing. However, it also has a unique character, since the atoms avoid the usual singlet pairing common to metals and instead pair with the spins aligned parallel. The triplet pairing, in turn, leads to many new phenomena and a richer phase diagram, which was discovered by Osheroff et al. (1972). The third superfluid in this chapter is the two-dimensional electron gas under strong magnetic field, which shows the quantum Hall effect and the fractional quantum Hall effect. It is also a highly correlated fluid.

Keywords

Landau Level Quantum Hall Effect Pair Distribution Function Ground State Wave Function Average Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, A. A., and I. M. Khalatnikov Rep. Prog. Phys. 22, 329 (1959).ADSCrossRefGoogle Scholar
  2. Achter, E. K., and L. Meyer, Phys. Rev. 188, 291 (1969).ADSCrossRefGoogle Scholar
  3. Anderson, P. W, and W. E Brinkman, in The Helium Liquids, eds. J. G. M. Armitage, and I. E. Farquhar ( Academic Press, New York, 1975 ), pp. 315–416.Google Scholar
  4. Balian, R., and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  5. Baym, G., and C. Pethick, in The Physics of Liquid and Solid Helium,Part 2, eds. J. B. Ketterson, and K. Bennemann (Wiley, New York, 1978), Chap. 1.Google Scholar
  6. Berk, N. E, and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).ADSCrossRefGoogle Scholar
  7. BI.Il, A., Physica 7, 860 (1940).ADSCrossRefGoogle Scholar
  8. Bogoliubov, N. N., J Phys. Moscow 11, 23 (1947).Google Scholar
  9. Bogoliubov, N. N., and D. N. Zubarev, Soy. Phys. JETP 1, 83 (1955).Google Scholar
  10. Brooker, G. A., and J. Sykes, Phys. Rev Lett. 21, 279 (1968).ADSCrossRefGoogle Scholar
  11. Brown, G. V, and M. H. Coopersmith, Phys. Rev 178, 327 (1969).ADSCrossRefGoogle Scholar
  12. Cowley, R. A., and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).ADSCrossRefGoogle Scholar
  13. Dingle, R. M., Philos. Mag. 40, 573 (1949).MATHGoogle Scholar
  14. Doniach, S., and S. Engelsberg, Phys. Rev. Lett. 17, 750 (1966).ADSCrossRefGoogle Scholar
  15. Dy, K. S., and C. J. Pethick, Phys. Rev. 185, 373 (1969).ADSCrossRefGoogle Scholar
  16. Feenberg, E., Theory of Quantum Fluids ( Academic Press, New York, 1969 ).Google Scholar
  17. Feynman, R. P, Phys. Rev 94, 262 (1954).ADSMATHCrossRefGoogle Scholar
  18. Feynman, R. P, and M. Cohen, Phys. Rev. 102, 1189 (1956)ADSMATHCrossRefGoogle Scholar
  19. Feynman, R. P, and M. Cohen, Phys. Rev. 107, 13 (1957).ADSMATHCrossRefGoogle Scholar
  20. Francis, W. P, G. V. Chester, and L. Reatto, Phys. Rev A 1, 86 (1970).ADSCrossRefGoogle Scholar
  21. Girvin, S. M., A. H. Macdonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986).ADSCrossRefGoogle Scholar
  22. Girvin, S. M., in The Quantum Hall Effect, eds. R. E. Prange, and S. M. Girvin ( Springer-Verlag, New York, 1987 ).Google Scholar
  23. Glyde, H. R., Excitations in Liquid and Solid Helium (Oxford University Press, Oxford, 1994 ).Google Scholar
  24. Greywall, D. S., Phys. Rev B 27, 2747 (1983).ADSCrossRefGoogle Scholar
  25. Greywall, D. S., Phys. Rev. B 33, 7520 (1986).ADSCrossRefGoogle Scholar
  26. Griffin, A., Phys. Rev B 32, 3289 (1985).ADSCrossRefGoogle Scholar
  27. Hallock, R. B., J. Low Temp. Phys. 9, 109 (1972).ADSCrossRefGoogle Scholar
  28. Harling, O., Phys. Rev. A 3, 1073 (1971).ADSCrossRefGoogle Scholar
  29. Hirschfelder, J. O., C. E Curtiss, and R. B. Bird, Molecular Theory of Gasses and Liquids ( Wiley, New York, 1954 ), p. 110.Google Scholar
  30. Hohenberg, P. C., and P. M. Platzman, Phys. Rev 152, 198 (1966).ADSCrossRefGoogle Scholar
  31. Hone, D., Phys. Rev. 121, 669 (1961).ADSCrossRefGoogle Scholar
  32. Jain, J. K., J. Phys. Chem. Solids 51, 889 (1990).ADSCrossRefGoogle Scholar
  33. Jancovici, B. Phys. Rev. Lett. 46 386 (1981).Google Scholar
  34. Jastrow, R., Phys. Rev. 98, 1479 (1955).ADSMATHCrossRefGoogle Scholar
  35. Jensen, H. H., H. Smith, and J. W. Wilkins, Phys. Lett. A 27, 532 (1968).ADSCrossRefGoogle Scholar
  36. Klitzing, Von K., G. Dorda, and M. Pepper, Phys. Rev Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  37. Kohn, W, Phys. Rev. 123, 1242 (1961).ADSMATHCrossRefGoogle Scholar
  38. Kohn, W, and D. Sherrington, Rev Mod. Phys. 42, 1 (1970).ADSMATHCrossRefGoogle Scholar
  39. Kosterlitz, J. M., and D. J. Thouless, J. Phys. C 6, 1181 (1973).ADSCrossRefGoogle Scholar
  40. Laughlin, R. B., Phys. Rev Lett. 50, 1395 (1983).ADSCrossRefGoogle Scholar
  41. Landau, L. D., J. Phys. Moscow 5, 71 (1941); 11, 91 (1947); translations in I. M. Khalatnikov, Introduction to the Theory of Superfluidity ( Benjamin, Reading, Mass., 1965 ).Google Scholar
  42. Landau, L. D., J. Phys. Moscow 10, 25 (1946)MATHGoogle Scholar
  43. Landau, L. D., Sou Phys. JETP 3, 920 (1956)Google Scholar
  44. Landau, L. D., Sou Phys. JETP 5, 101 (1957).MATHGoogle Scholar
  45. Lee, D. M., D. D. Osheroff, and R. C. Richardson, Rev. Mod. Phys. 69, 645–690 (1997).ADSCrossRefGoogle Scholar
  46. Leggett, A. J., Phys. Rev 140, A1869 (1965).MathSciNetADSCrossRefGoogle Scholar
  47. Leggett, A. J., Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar
  48. Levin, K., and O. T. Valls, Phys. Rev B 17, 191 (1978).ADSCrossRefGoogle Scholar
  49. Lifshits, E. M., and E. L. Andronikashivile, A Supplement to Helium ( Consultants Bureau, New York, 1959 ), p. 75.Google Scholar
  50. Lilly, M. P., K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. WEST, Phys. Rev. Lett. 82, 394 (1999).ADSCrossRefGoogle Scholar
  51. Luttinger, J. M., and P. Nozieres, Phys. Rev. 127, 1423, 4131 (1962).Google Scholar
  52. Massey W. E., Phys. Rev. 151, 153 (1966).ADSCrossRefGoogle Scholar
  53. Massey W. E., and C. W. Woo, Phys. Rev. 164, 256 (1967).ADSCrossRefGoogle Scholar
  54. Mcmillan, W. L., Phys. Rev. 138, A442 (1965).ADSCrossRefGoogle Scholar
  55. Mook, H. A., Phys. Rev. Lett. 55, 2452 (1985).ADSCrossRefGoogle Scholar
  56. Osheroff, D. D., R. C. Richardson, and D. M. Lee, Phys. Rev Lett. 28, 885 (1972).ADSCrossRefGoogle Scholar
  57. Osheroff, D. D., W. J. Gully, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 29, 920 (1972).ADSCrossRefGoogle Scholar
  58. Patton, B. R., and A. Zaringhalam, Phys. Lett. A 55, 95 (1975).ADSCrossRefGoogle Scholar
  59. Penrose, O., Philos. Mag. 42, 1373 (1951).MATHGoogle Scholar
  60. Penrose, O., and L. Onsager, Phys. Rev. 104, 576 (1956).ADSMATHCrossRefGoogle Scholar
  61. Percus, J. K., in The Equilibrium Theory of Classical Fluids,eds. H. L. Frisch and J. L. Lebowitz (Benjamin, Reading, Mass., 1964), pp. 11–33–11–170.Google Scholar
  62. Pines, D., and P. Nozieres, The Theory of Quantum Liquids ( Benjamin, Reading, Mass., 1966 ).Google Scholar
  63. Prange, R. E., in The Quantum Hall Effect, eds. R. E. Prange and S. M. Girvin (Springer-Verlag, New York, 1987). Puff, R. D., and J. S. Tenn, Phys. Rev. A 1, 125 (1970).Google Scholar
  64. Reatto, L., and G. V. Chester, Phys. Rev. 155, 88 (1967).ADSCrossRefGoogle Scholar
  65. Rice, M. J., Phys. Rev. 159, 153 (1967)ADSCrossRefGoogle Scholar
  66. Rice, M. J., Phys. Rev. 162, 189 (1967)ADSCrossRefGoogle Scholar
  67. Rice, M. J., Phys. Rev. 163, 206 (1967).ADSCrossRefGoogle Scholar
  68. Rodriquez, L. J., H. A. Gersch, and H. A. Mook, Phys. Rev A 9, 2085 (1974).ADSCrossRefGoogle Scholar
  69. Ron, A., in The Helium Liquids, eds. J. G. M. Armitage and L. E. Farquhar ( Academic Press, New York, 1975 ), pp. 211–240.Google Scholar
  70. Rivalds, J., and A. Zawadowski, Phys. Rev. Lett. 25, 333, 632 (1970).ADSCrossRefGoogle Scholar
  71. Sköld, K., and C. A. Pelizzari, Philos. Trans. Roy. Soc. (London) B 290, 605 (1980).ADSCrossRefGoogle Scholar
  72. Stirling, W. G., and H. R. Glyde, Phys. Rev. B 41, 4224 (1990).ADSCrossRefGoogle Scholar
  73. Stormer, H. L., (unpublished) (1999).Google Scholar
  74. Svensson, E. C., V E Sears, and A. Griffin, Phys. Rev. B 23, 4493 (1981).ADSCrossRefGoogle Scholar
  75. Svensson, E. C., and V. E Sears, Physica 137B, 126 (1986).Google Scholar
  76. Tsui, D. C., H. L. Störmer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).ADSCrossRefGoogle Scholar
  77. Vollhardt, D., and P. Wölfe, The Superftuid Phases of Helium 3 (Taylor and Francis, London, 1990). Wheatley, J. C., Rev. Mod. Phys. 47, 415 (1975).CrossRefGoogle Scholar
  78. Woods, A. D. B., and V E Sears, Phys. Rev. Lett. 39, 415 (1977).ADSCrossRefGoogle Scholar
  79. Yang, C. N., Rev. Mod. Phys. 34, 694 (1962).ADSCrossRefGoogle Scholar
  80. Yennie, D. R., Rev. Mod. Phys. 59, 781 (1987).ADSCrossRefGoogle Scholar
  81. Zawadowski, A., J. Ruvalds, and J. Solna, Phys. Rev. A 5, 399 (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations