Magnetic Structures of Rare Earth Metals and Alloys

  • W. C. Koehler


In this chapter we review the magnetic structures of the rare earth metals and of certain of their alloys. Much of this information has been obtained in the last ten years from neutron diffraction experiments. Complementary structural data have been provided by the results of classical magnetizaton experiments. A detailed survey of such data is given in Chapter 4. Ideally, both techniques should be, and indeed have been, used to obtain the maximum structural information.


Neutron Diffraction Magnetic Structure Rare Earth Metal Curie Point Turn Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koehler, W. C. and Wollan, E. O., Phys. Rev., 97, 1177 (1955).CrossRefGoogle Scholar
  2. 2.
    In many cases the same crystals were investigated at the two laboratories due to the courtesy of Dr. F. H. Spedding.Google Scholar
  3. 3.
    See, for example, Bozorth, R. M. and Graham, Jr., C. D., in Rare Earth Metals, Compounds, and Solid Solutions, Handbook of Magnetic Materials and Their Properties (P. Albert and F. Luborski, eds.). Reinhold Press (1970); and Tebble, R. S. and Craik, D. J., in Magnetic Materials. Wiley-Interscience (1969). See especially Chapter 6.Google Scholar
  4. 4.
    Koehler, W. C., J. Appl. Phys., 36, 1078 (1965)CrossRefGoogle Scholar
  5. Koehler, W. C., in AIME Symposium on Magnetic and Inelastic Scattering of Neutrons by Metals (T. J. Rowland and Paul A. Beck, eds ). Gordon and Breach (1968).Google Scholar
  6. 5.
    A more detailed description of the general magnetic and crystallographic properties of the rare earth metals is given in Chapters 1, 2 and 4.Google Scholar
  7. 6.
    Details will be found in Chapters 4 and 7.Google Scholar
  8. 7.
    Cable, J. W., Wollan, E. O., Koehler, W. C. and Wilkinson, M. K., Phys. Rev., 140, 1896 (1965).CrossRefGoogle Scholar
  9. 8.
    For a general description of the oscillatory structures, see Chapter 2.Google Scholar
  10. 9.
    Miwa, H. and Yosida, K. Progr. Theoret. Phys. (Kyoto), 26, 693 (1961).CrossRefGoogle Scholar
  11. 10.
    This compilation includes results from many sources. References are given in the appropriate paragraphs in the text.Google Scholar
  12. 11.
    Belov, K. P. and Ped’ko, A. V., Zh. Eksp. Teor. Fiz., 47, 87 (1962).Google Scholar
  13. 12.
    Graham, C. D. J. App!. Phys., 34, 1341 (1963).CrossRefGoogle Scholar
  14. 13.
    Will, G., Nathans, R. and Alperin, H. A., J. App!. Phys., 35, 1045 (1964).CrossRefGoogle Scholar
  15. 14.
    Cable, J. W. and Wollan, E. O., Phys. Rev., 165, 733 (1968).CrossRefGoogle Scholar
  16. 15.
    Corner, W. D., Roe, W. C. and Taylor, K. N. R., Proc. Phys. Soc. (London), 80, 927 (1962).CrossRefGoogle Scholar
  17. 16.
    Graham, C. D., J. Phys. Soc. Japan, 16, 1310 (1962).Google Scholar
  18. 17.
    Kuchin, V. M., Semenkov, V. A., Shil’shtein, S. Sh. and Patrikeev, Yu. B., Zh. Eksp. Teor. Fiz., 55, 1241 (1968).Google Scholar
  19. 18.
    Koehler, W. C., Child, H. R., Wollan, E. O. and Cable, J. W., J. App!. Phys. Suppl., 34, 1335 (1963).CrossRefGoogle Scholar
  20. 19.
    Koehler, W. C., in Transactions of the American Crystallographic Association ( H. G. Smith, ed). Polycrystal Book Service, Pittsburgh (1967), Vol. 3, p. 53.Google Scholar
  21. 20.
    See, for instance, Elliott, R. J., Phys. Rev., 124, 346 (1961).Google Scholar
  22. 21.
    Dietrich, O. W. and Als-Nielsen, J., Phys. Rev., 162, 315 (1967).CrossRefGoogle Scholar
  23. 22.
    Umebayashi, H., Shirane, G., Frazier, B. C. and Daniels, W. B., Phys. Rev., 165, 688 (1968).CrossRefGoogle Scholar
  24. 23.
    Dietrich and Als-Nielsen observed a small difference in the turn angle measured from the two satellites of the 002 reflection. We give the average of the two.Google Scholar
  25. 24.
    Wilkinson, M. K., Koehler, W. C., Wollan, E. O. and Cable, J. W., J. Appl. Phys., 32, 48S (1961).CrossRefGoogle Scholar
  26. 25.
    Jordan, R. G. and Lee, E. W., Proc. Phys. Soc., 92, 1074 (1967).CrossRefGoogle Scholar
  27. 26.
    Koehler, W. C., Cable, J. W., Wilkinson, M. K. and Wollan, E. O., Phys. Rev., 151. 414 (1966).CrossRefGoogle Scholar
  28. 27.
    Koehler, W. C., Cable, J. W., Child, H. R., Wilkinson, M. K. and Wollan, E. O., Phys. Rev., 158, 450 (1967).CrossRefGoogle Scholar
  29. 28.
    Stringfellow, M., private communication.Google Scholar
  30. 29.
    Koehler, W. C., unpublished.Google Scholar
  31. 30.
    Gray, W. J. and Spedding, F. H., IS-2044, February 1968, unpublished, have detected in weak fields an anomaly in the c-axis magnetization data in Er near 28 K.Google Scholar
  32. 31.
    Koehler, W. C., Cable, J. W., Wollan, E. O. and Wilkinson, M. K., Phys. Rev., 126, 16–2 (1962).CrossRefGoogle Scholar
  33. 32.
    Davis, D. D. and Bozorth, R. M., Phys. Rev., 118, 1543 (1960).CrossRefGoogle Scholar
  34. 33.
    Brun, T. O., Sinha, S. K., Wakabayashi, N., Lander, G. H., Edwards, L. R. and Spedding, F. H., Phys. Rev., BI, 1251 (1970).Google Scholar
  35. 34.
    Cohen, R. L., Phys. Rev., 169, 432 (1968).CrossRefGoogle Scholar
  36. 35.
    On reexamination of the older data in the light of the Mössbauer and new neutron results it was concluded that a wave vector as small as 0.275 b3 at TN would have been detected. Unfortunately the crystal on which the measurements were made is no longer available for a repetition of the work.Google Scholar
  37. 36.
    Brun, T. O. and Lander, G. H., Phys. Rev. Letters, 23, 1295 (1969).CrossRefGoogle Scholar
  38. 37.
    Child, H. R., Koehler, W. C., Wollan, E. O. and Cable, J. W., Phys. Rev., 138, A1655 (1965).CrossRefGoogle Scholar
  39. 38.
    Child, H. R. and Cable, J. W., J. Appl. Phys., 40, 1003 (1969).CrossRefGoogle Scholar
  40. 39.
    Gray, W. J. and Spedding, F. H., IS-2044 (1968).Google Scholar
  41. 40.
    Bozorth, R. M. and Gambino, R. J., Phys. Rev., 147, 487 (1966).Google Scholar
  42. 41.
    Child, H. R., ORNL-TM-1063 (1965).Google Scholar
  43. 42.
    A brief description of these results appears in Millhouse, A. H. and Koehler, W. C., Les Elements des Terres Rares. Colloques Intern. C.N.R.S. No 180, Paris (1970), Vol. II, p. 214. A more complete account is in preparation for publication in the Physical Review.Google Scholar
  44. 43.
    Bozorth, R. M., J. Appl. Phys., 38, 1366 (1967).CrossRefGoogle Scholar
  45. 44.
    Again, near Tx we cannot be certain that the ordering is helical and not a uniaxial oscillation along equivalent directions in the basal plane. What is certain is that Er atom moments, not just Dy atom moments, are ordered in the basal plane.Google Scholar
  46. 45.
    Bozorth, R. M., Gambino, R. J. and Clark, A. E., J. Appl. Phys., 39, 883 (1968).CrossRefGoogle Scholar
  47. 46.
    Pickart, S., private communication.Google Scholar
  48. 47.
    Shirane, G. and Pickart, S., J. Appl. Phys., 37, 1032 (1966).CrossRefGoogle Scholar
  49. 48.
    Lebech, Bente, Solid State Comm., 6, 791 (1968).CrossRefGoogle Scholar
  50. 49.
    Bjerrum-Moller, H., Mackintosh, A. R. and Gylden Houmann, J. C., J. Appl. Phys., 39, 1078 (1965).Google Scholar
  51. 50.
    Spedding, F. H., Jordan, R. G., and Williams, R. W., J. Chem. Phys., 51, 509 (1969).CrossRefGoogle Scholar
  52. 51.
    Spedding, F. H., Ito, Y. and Jordan, R. G., J. Chem. Phys., 53, 1455 (1970).CrossRefGoogle Scholar
  53. 52.
    Spedding, F. H., Ito, Y., Jordan, R. G. and Croat, J., J. Chem. Phys., 54, 1995 (1971).Google Scholar
  54. 53.
    Evidence of a small c-axis component, 0.9 ß was found for the alloy in the c-axis magnetization data. It would be difficult to detect in the neutron scattering experiments.Google Scholar
  55. 54.
    In a random domain sample the moment directions in the plane cannot be determined. Experiments in progress at the Oak Ridge National Laboratory (Q. Khan and W. C. Koehler) on indicate that the easy direction at 4.2 K is the b-direction characteristic of Ho rather than the a-direction characteristic of Dy.Google Scholar
  56. 55.
    See, for example, Cooper, B. R., Solid State Physics. Academic Press, New York (1968), Vol. 21, p. 393.Google Scholar
  57. 56.
    Keeton, S. C. and Loucks, T. L., Phys. Rev., 168, 672 (1968).CrossRefGoogle Scholar
  58. 57.
    Evenson, W. E. and Liu, S. H., Phys. Rev., 178, 783 (1969).CrossRefGoogle Scholar
  59. 58.
    Nagamiya, T., Solid State Physics. Seitz, F. and Turnbull, D. (eds), Academic Press, New York (1967), Vol. 20, p. 305.Google Scholar
  60. 59.
    Feron, F. L. and Pauthenet, R., Proc. Seventh Rare Earth Research Conference. Coronado, California (1968).Google Scholar
  61. 60.
    Rhyne, J. J. and Clark, A. E., J. Appl. Phys., 38, 1379 (1967).CrossRefGoogle Scholar
  62. 61.
    du Plessis, P. de V., Physica, 41, 379 (1969).CrossRefGoogle Scholar
  63. 62.
    Watson, R. E., Freeman, A. J. and Dimmock, J. P., Phys. Rev., 167, 497 (1968).CrossRefGoogle Scholar
  64. 63.
    de Gennes, P. G., J. Phys. Radium, 23, 510 (1962).CrossRefGoogle Scholar
  65. 64.
    de Gennes, P. G. and Saint James, D., Solid State Comm., 1, 62 (1963).CrossRefGoogle Scholar
  66. 65.
    Elliott, R. J. and Wedgwood, F. A., Proc. Phys. Soc., 84, 63 (1964).CrossRefGoogle Scholar
  67. 66.
    Miwa, H., Proc. Phys. Soc. (London), 85, 1197 (1965).Google Scholar
  68. 67.
    Koehler, W. C., Child, H. R., Cable, J. W. and Moon, R. M., J. Appl. Phys., 38, 1384 (1967).CrossRefGoogle Scholar
  69. 68.
    Child, H. R. and Koehler, W. C., J. de Physique, 32, C1–1128 (1971).CrossRefGoogle Scholar
  70. 69.
    Child, H. R. and Koehler, W. C., J. Appl. Phys., 37, 1353 (1966).CrossRefGoogle Scholar
  71. 70.
    Wollan, E. O., Phys. Rev., 160, 369 (1967).CrossRefGoogle Scholar
  72. 71.
    See Umebayashi et al.,Ref. 22, for references to the high pressure w ork.Google Scholar
  73. 72.
    Strandburg, D. L., Legvold, S. and Spedding, F. H., Phys. Rev.,27, 2046 (1962). These data are described in Chapter 4.Google Scholar
  74. 73.
    Herpin, A. and Meriel, P., Compt. Rend., 250, 1450 (1960).Google Scholar
  75. 74.
    Enz, U, Physica, 26, 69 (1960)CrossRefGoogle Scholar
  76. 75.
    Nagamiya, T., Nagata, K. and Kitano, Y., Progr. Theoret. Phys., (Kyoto), 27, 1253 (1962)CrossRefGoogle Scholar
  77. Kitano, Y. and Nagamiya, T., ibid., 31, 1 (1964).Google Scholar
  78. 76.
    Behrendt, D. R., Legvold, S. and Spedding, F. H., Phys. Rev., 109, 1544 (1958).CrossRefGoogle Scholar
  79. 77.
    Schieber, M., Foner, S., Dodo, D. and McNiff, Jr., E. J., J. Appl. Phys., 39, 885 (1968).CrossRefGoogle Scholar
  80. 78.
    Ofer, S., Segal, E., Nowick, I., Bauminger, E. R., Gradzins, L., Freeman, A. J. and Schieber, M., Phys. Rev., 137, A627 (1965).CrossRefGoogle Scholar
  81. 79.
    Bozorth, R. M. and Van Vleck, J. H., Phys. Rev., 118, 1493 (1960).CrossRefGoogle Scholar
  82. 80.
    Cohen, R. L., Hüfner, S. and West, K. W., Phys. Letters, 28A, 582 (1969).CrossRefGoogle Scholar
  83. 81.
    Nereson, N. G., Olsen, C. E. and Arnold, G. P., Phys. Rev., 135, A176 (1964).CrossRefGoogle Scholar
  84. 82.
    Bjerrum-Moller, H. and Millhouse, A. H., private communication.Google Scholar
  85. 83.
    Wilkinson, M. K., Child, H. R., McHargue, C. J., Koehler, W. C. and Wollan, E. O., Phys. Rev., 122, 1409 (1961).CrossRefGoogle Scholar
  86. 84.
    Moon, R. M., Cable, J. W. and Koehler, W. C., J. Appl. Phys. Suppl., 35, 1041 (1964).CrossRefGoogle Scholar
  87. 85.
    Johansson, J., Lebech, B., Nielsen, M., Bjerrum-Moller, H. and Mackintosh, A. R., Phys. Rev. Letters, 25, 524 (1970).CrossRefGoogle Scholar
  88. 86.
    Parkinson, D. H., Simon, F. E. and Spedding, F. H., Proc. Roy. Soc. (London), 207A, 137 (1951).CrossRefGoogle Scholar
  89. 87.
    Lock, J. M., Proc. Phys. Soc. (London), B70 566 (157).Google Scholar
  90. 88.
    Lounasmaa, O. V., Phys. Rev., 133, A211 (1964).CrossRefGoogle Scholar
  91. 89.
    Cable, J. W., Moon, R. M., Koehler, W. C. and Wollan, E. O., Phys. Rev. Letters, 12, 553 (1964).CrossRefGoogle Scholar
  92. 90.
    Wedgwood, A., private communication.Google Scholar
  93. 91.
    Bleaney, B., Proc. Roy. Soc. (London), A276, 39 (1963).Google Scholar
  94. 92.
    Trammell, G. T., Phys. Rev., 92, 1387 (1953).CrossRefGoogle Scholar
  95. 93.
    Odiot, Simone and Saint-James, D., J. Phys. Chem. Solids, 17, 117 (1960).CrossRefGoogle Scholar
  96. 94.
    Koehler, W. C. and Wollan, E. O., Phys. Rev., 92, 1380 (1953).CrossRefGoogle Scholar
  97. 95.
    Koehler, W. C., Wollan, E. O. and Wilkinson, M. K., Phys. Rev., 110, 37 (1958).CrossRefGoogle Scholar
  98. 96.
    Freeman, A. J. and Watson, R. E., Phys. Rev., 127, 2058 (1962).CrossRefGoogle Scholar
  99. 97.
    Blume, M., Freeman, A. J. and Watson, R. E., J. Chem. Phys, 37, 1245 (1962)CrossRefGoogle Scholar
  100. 98.
    Child, H. R., Moon, R. M., Raubenheimer, L. J. and Koehler, W. C., J. Appl. Phys., 38, 1381 (1967).CrossRefGoogle Scholar
  101. 99.
    Koehler, W. C., Moon, R. M., Cable, J. W. and Child, H. R., J. de Physique, 32, C1–296 (1971).CrossRefGoogle Scholar
  102. 100.
    Johnston, D. F., Proc. Phys. Soc. (London), 88, 37 (1966).CrossRefGoogle Scholar
  103. 101.
    Johnston, D. F. and Rimmer, D. E., J. Phys. C (Solid St. Phys.), 2, 1151 (1969).CrossRefGoogle Scholar
  104. Lovesey, S. W. and Rimmer, D. E., Reports on Prog. in Physics,32 333 (1969).Google Scholar
  105. 103.
    Lander, G. H. and Brun, T. O., J. de Physique, 32, CI-571 (1971).Google Scholar
  106. 104.
    Halpern, O. and Johnson, M. H., Phys. Rev., 55, 898 (1939).CrossRefGoogle Scholar
  107. 105.
    This conclusion differs from that of Kuchin, V. M. et al.,Ref. 17, who assert that the distribution of spin density in metallic gadolinium agrees well with that calculated for the Gd+3 ion.Google Scholar
  108. 106.
    Steinsvoll, O., Shirane, G., Nathans, R., Blume, M., Alperin, H. A. and Pickart, S. J., Phys. Rev., 161, 499 (1967).CrossRefGoogle Scholar
  109. 107.
    For Gd the 4-f form factor is simply.Google Scholar
  110. 108.
    Strictly speaking additional terms in and should be included. These have been omitted because they are negligibly small.Google Scholar
  111. 109.
    Brun, T. O., Thesis, Iowa State University, 1970.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • W. C. Koehler
    • 1
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations