Advertisement

Historical Controls and Modern Survival Analysis

  • Niels Keiding
Chapter

Abstract

Comparison of observed mortality with ‘known’, ‘background’, or ‘standard’ rates has taken place for several hundred years. With the developments of regression models for survival data, an increasing interest has arisen in individualizing the standardisation using covariates of each individual. Also, account sometimes needs to be taken of random variation in the standard group.

Keywords

Liver Transplantation Primary Biliary Cirrhosis Historical Control Prognostic Index Primary Biliary Cirrhosis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, P.K., Borgan, O., Gill, R.D. & Keiding, N. (1993). Statistical Models Based on Counting Processes. New York: Springer, 767 pp.CrossRefGoogle Scholar
  2. Andersen, P.K. & Væth, M. (1989). Simple parametric and nonparametric models for excess and relative mortality. Biometrics 45, 523–535.MATHGoogle Scholar
  3. Bonsel, C..l., Klompmaker, I..J., van’t Veer, F., Habbema, J.D.F. & Slooff, M.J.H. (1990). Use of prognostic models for assessment of value of liver transplantation in primary biliary cirrhosis. Lancet 335, 493–497.Google Scholar
  4. Christensen, E., Neuberger, J., Crowe, J., Altman, D.G., Popper, H., Portmann, B., Doniach, D., Ranek, L., Tygstrup, N. & Williams, R. (1985). Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology 89, 1084–1091.Google Scholar
  5. Cochran, W.G. (1969). The use of covariance in observational studies. Appl. Statist 18, 270–275.CrossRefGoogle Scholar
  6. Cochran, W.G. & Rubin, D.B. (1973). Controlling bias in observational studies: A review. Sankhya A 35, 417–446.MATHGoogle Scholar
  7. Ederer, F., Axtell, L.M. & Cutler, S.J. (1961). The relative survival rate: A statistical methodology. Nat. Cancer Inst. Monogr 6, 101–121.Google Scholar
  8. Gail, M.H. & Byar, D.B. (1986). Variance calculations for direct adjusted survival curves with applications to testing for no treatment effect. Biornetrical J 28, 587–599.MATHGoogle Scholar
  9. Gastwirth, J.L. & Greenhouse, S.W. (1994). Biostatistical concepts and methods in the legal setting. Statist. in Medicine (to appear).Google Scholar
  10. Hill, C., Laplanche, A. & Rezvani, A. (1985). Comparison of the mortality of a cohort with the mortality of a reference population in a prognostic study. Statist. in Medicine 4, 295–302.Google Scholar
  11. Keiding, N. (1987). The method of expected number of deaths, 1786–1886–1986. Int. Statist. Rev. 55, 1 – 20.MathSciNetMATHCrossRefGoogle Scholar
  12. Keiding, N. (1991). Age—specific incidence and prevalence: a statistical perspective (with discussion). J. Roy. Statist. Soc. A 154, 371–412.MathSciNetMATHCrossRefGoogle Scholar
  13. Keiding, N. (1992). Independent delayed entry (with discussion). Survival Analysis: State of the Art. (eds. J.P. Klein & P.K. Goel). Kluwer, Dordrecht. 309–326.CrossRefGoogle Scholar
  14. Keiding, N. & Knuiman, M.W. (1990). Letter to the editor on ‘Survival analysis in natural history studies of disease’ by A. Cnaan Si L. Ryan. Statist. in Medicine 9, 1221–1222.Google Scholar
  15. Keiding, N. & Vth, M. (1986). Calculating expected mortality. Statist. in Medicine 5, 327–334.Google Scholar
  16. Keiding, S., Ericzon, B.—G., Eriksson, S., Flatmark, A., Höckerstedt, K., Isoniemi, H., Karlberg, I., Keiding, N., Olsson, R., Samela, K., Schrumpf, E. & Söderman, C. (1990). Survival after liver transplantation of patients with PBC in the Nordic countries: Comparison to expected survival from ontoher series of transplantations and from an international trial of medical treatment. Scand..7. Gastroenterol 25, 11–18.Google Scholar
  17. Makuch, R.W. (1982). Adjusted survival curve estimation using covariates. Journal of Chronic Diseases 3, 437–443.CrossRefGoogle Scholar
  18. Markus, B.H., Dickson. E.R., Grambsch, P.M., Fleming, T.R., Mazzaferro, V., Klintmalm, B.G.B., Wiesner, R.H., van Thiel, D.H. & Starzl, T.E. (1989). Efficacy of liver transplantation in patients with primary biliary cirrhosis. New England J. Medicine 320, 1709–1713.CrossRefGoogle Scholar
  19. Neuberger, J., Altman, D.G., Christensen, E., Tygstrup, N. & Williams, R. (1986). Use of a prognostic index in evaluation of liver transplantation for primary biliary cirrhosis. Transplantation 4, 713–716.Google Scholar
  20. Nielsen, B. (1993). Expected survival in the Cox model. Research Report 93/1, Statistical Research Unit, University of Copenhagen.Google Scholar
  21. Thomsen, B.L. (1990). The three sources of variation when distributions are predicted in heterogeneous populations: two case studies. Research Report 90/6, Statistical Research Unit, University of Copenhagen.Google Scholar
  22. Thomsen, B.L., Keiding, N. & Altman, D.C. (1991). A note on the calculation of expected survival. Statist. in Medicine 10, 733–738.Google Scholar
  23. Thomsen, B.L., Keiding, N. & Altman, D.G. (1992). Reply to a letter to the editor, cf. Thomsen & al. (1991). Statist. in Medicine 11, 1528–1529.Google Scholar
  24. Vwth, M. (1992). Letter to the editor re Thomsen et al. (1991). Statist. in Medicine 11,1527–1528.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Niels Keiding
    • 1
  1. 1.Department of BiostatisticsUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations