Advertisement

Weak-Beam Microscopy

  • John B. Vander Sande

Abstract

Transmission electron microscopy of thin, crystalline samples has been profitably performed for the past two decades. A significant fraction of the transmission electron microscopy performed has focused on the observation of strain-related defects, such as point defect clusters, dislocations, etc. associated with the microstructure of the crystalline thin sample. Even though these strain-related defects are often considered with reference to an angstrom-unit-sized displacement, for instance a Burgers vector in the case of a dislocation, the transmission electron microscope image of such a defect, observed in bright-field or strong-beam dark-field microscope, can be hundreds of angstroms in size. It is well known that a dislocation has a bright-field image whose peak width at half minimum is between ξg/3 and ξg/5 where ξg is the extinc-tion distance, often many hundreds of angstroms in size (HIRSCH et al., 1965).

Keywords

Dislocation Line Partial Dislocation Deviation Parameter Transmitted Beam Bragg Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. M., 1979, unpublished research.Google Scholar
  2. Allen, R. M. and Vander Sande, J. B., 1978, Met. Trans., 9A, 1251.CrossRefGoogle Scholar
  3. Allen, R. M. and Vander Sande, J. B., 1979, to be published.Google Scholar
  4. Campany, R. G., Loretto, M. H. and Smallman, R. E., 1973, J. Microsc., 98, 174.CrossRefGoogle Scholar
  5. Carter, C. B., 1977, Phil. Mag., 36, 147.CrossRefGoogle Scholar
  6. Cockayne, D. J. H., Ray, I. L. F. and Whelan, M. J., 1969, Phil. Mag., 20, 1265.CrossRefGoogle Scholar
  7. Cockayne, D. J. H., 1972, Z. Naturf. A, 27, 452.Google Scholar
  8. Cockayne, D. J. H., Jenkins, M. L. and Ray, I. L. F., 1971, Phil. Mag., 24, 1383.CrossRefGoogle Scholar
  9. Crawford, R. C. and Ray, I. L. F., 1977, Phil. Mag., 35, 549.CrossRefGoogle Scholar
  10. Green, M. L., Chin, G. Y. and Vander Sande, J. B., 1977, Met. Trans., 8A, 353.CrossRefGoogle Scholar
  11. Gomez, A., Cockayne, D. J. H., Hirsch, P. B. and Vitek, V., 1975, Phil. Mag., 31, 105.CrossRefGoogle Scholar
  12. Hall, E. L. and Vander Sande, J. B., 1978, Phil. Mag., 37, 137.Google Scholar
  13. Hausserman, F. and Schaumberg, H., 1973, Phil. Mag. 27, 745.CrossRefGoogle Scholar
  14. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., 1965, Electron Microscopy of Thin Crystals, Butterworths, London.Google Scholar
  15. Humphreys, C. J., Drummond, R. A., Hart-Davis, A. and Butler, E. P., 1977, Phil. Mag., 35, 1543.CrossRefGoogle Scholar
  16. Jenkins, M. L., 1972, Phil. Mag., 26, 747.CrossRefGoogle Scholar
  17. Karnthaler, H. P. and Wintner, E., 1975, Acta Met., 23, 1501.CrossRefGoogle Scholar
  18. Nordlander, I., and Thölen, A., 1973, J. Microsc., 98, 221.CrossRefGoogle Scholar
  19. Packeiser, G. and Haasen, P., 1977, Phil. Mag., 35, 821.CrossRefGoogle Scholar
  20. Ray, I. L. F. and Cockayne, D. J. H., 1971, Proc. Roy. Soc., A325, 534; 1973, J. Microscopy, 98, 170.CrossRefGoogle Scholar
  21. Stobbs, W. M. and Sworn, C. H., 1971, Phil. Mag., 24, 1365.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • John B. Vander Sande
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations