Skip to main content

Brownian Motion Simulation of Chain Pullout: Modeling Fracture in Polymer Blends

  • Chapter
Interfacial Aspects of Multicomponent Polymer Materials

Abstract

We use Brownian dynamics to model the fracture of a polymer/polymer interface reinforced by “connector” chains [1]. The connectors weave back and forth across the boundary, forming single (diblock copolymer) or multiple “stitches” (random copolymer). We calculate the work to fracture this interface as a function of connector architecture and conformation, and find that multi-stitch connectors dramatically improve the interfacial strength. We rationalize this with scaling arguments, and discuss recent experiments. The conclusions provide guidelines for synthesizing connectors for high-strength composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. T. Pickett, D. Jasnow, and A. C. Balazs, Phys. Rev. Letts. 77(4), 671, (1996).

    Google Scholar 

  2. D. Gersappe, D. Irvine, A. C. Balazs, L. Guo, M. Rafailovich, J. Sokolov, S. Schwarz, and D. Peiffer, Science 265(5175), 1072 (1994).

    Google Scholar 

  3. H. Brown, Annu. Rev. Mater. Sci. 21, 463 (1991).

    Article  CAS  Google Scholar 

  4. C.-A. Dai, B. J. Dair, K. H. Dai, C. K. Ober, E. J. Kramer, C.-Y. Hui, L. W. Jelinski, Phys. Rev. Lett. 73, 2472 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. M. Sikka, W. L. Chen, N. N. Pellegrini, and K. I. Winey, in preparation.

    Google Scholar 

  6. L. A. Utracki, Polymer Blends and Alloys ( Hanser, New York, 1989 ).

    Google Scholar 

  7. F. Brochard-Wyart, P.-G. deGennes, L. Léger, Y. Marciano, and E. Raphael, J. Phys. Chem. 98, 9405 (1994).

    Article  CAS  Google Scholar 

  8. E. Raphael and P.-G. deGennes, J. Phys. Chem 96, 4002 (1992).

    Article  CAS  Google Scholar 

  9. H. Ji and P.-G. deGennes, Macromolecules 26, 520 (1993).

    Article  CAS  Google Scholar 

  10. D. Gersappe and A. C. Balais, Phys. Rev. E52 (5)[B] 5061.

    Google Scholar 

  11. C. Yeung, A. C. Balais, and D. Jasnow, Macromolecules 25, 1357 (1992).

    Article  CAS  Google Scholar 

  12. R. Kulasekere, H. Kaiser, J. F. Anker, T. P. Russell, H. R. Brown, C. J. Hawker, A. M. Mayes, Macromolecules 29, 5493 (1996).

    Article  CAS  Google Scholar 

  13. Y. Lyatskaya, D. Gersappe, N. A. Gross, and A. C. Balazs, J. Phys. Chem. 100, 1449 (1996).

    Article  CAS  Google Scholar 

  14. S. T. Milner and G. H. Fredrickson, Macromolecules 28, 7953 (1995).

    Article  CAS  Google Scholar 

  15. C. Creton, E. J. Kramer, C.-Y. Hui, and H. R. Brown, Macromolecules 25, 3075 (1992).

    Article  CAS  Google Scholar 

  16. J. M. Deutsch, Science 240, 922 (1988); J. M. Deutsch and T. L. Madden, J. Chem. Phys. 90, 2476 (1989).

    Google Scholar 

  17. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics ( Clarendon Press, Oxford, 1986 ).

    Google Scholar 

  18. M. Rubinstein, L. Leibler and A. Ajdari, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem 35, 628 (1994); K. P. O’Connor and T. C. B. McLeish, Polymer 33, 4314 (1992); K. E. Evans, J. Polym. Sci. 25, 353 (1987); P. Prentice, Polymer 24, 346 (1983).

    Google Scholar 

  19. T. C. B. McLeish, C. J. G. Plummer and A. M. Donald, Polymer 30, 1651 (1989).

    Article  CAS  Google Scholar 

  20. B. Lin and P. L. Taylor, Macromolecules 27, 4212 (1994).

    Article  CAS  Google Scholar 

  21. J. Washiyama, E. J. Kramer, C. F. Creton, and C.-H. Hui Macromolecules 27, 2019 (1994).

    Article  CAS  Google Scholar 

  22. Kramer, E. J. “Molecular Connectors at Polymer Interfaces; Hairs, Staples, and Stitches”, presented at March Meeting of the American Physical Society (1996).

    Google Scholar 

  23. Funded in part by ONR grant N00014–91-J-1363, NSF grant DMR-91–07102, and DOE grant DE-FG02–90ER45438 to A. C. B. and grant DMR-92–17935 to D. J. We thank Drs. D. Gersappe, C. Yeung, and M. Rubinstein for helpful discussions.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pickett, G.T., Jasnow, D., Balazs, A.C. (1997). Brownian Motion Simulation of Chain Pullout: Modeling Fracture in Polymer Blends. In: Lohse, D.J., Russell, T.P., Sperling, L.H. (eds) Interfacial Aspects of Multicomponent Polymer Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5559-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5559-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3284-6

  • Online ISBN: 978-1-4757-5559-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics