Skip to main content

Intercalated Graphite Fibers

  • Chapter
Intercalation in Layered Materials

Part of the book series: NATO ASI Series ((NSSB,volume 148))

Abstract

The novel geometry of graphite fibers facilitates the study of various intercalation phenomena and is of particular importance for practical applications of GICs. Also in their pristine form, graphite fibers offer unique advantages over other forms of graphite for the study of novel phenomena and for a variety of practical applications. The synthesis, structure and properties of intercalated graphite fibers have much in common with intercalated bulk graphite host materials, such as kish graphite and highly oriented pyrolytic graphite (HOPG),1 which are extensively discussed in this volume. We therefore briefly review here the structure and properties of intercalated graphite fibers and the differences between GICs prepared from fiber and bulk graphite host materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Moore, Chemistry and Physics of Carbon, 11,ed. P.L. Walker and P.A. Thrower (New York, Dekker), p. 69.

    Google Scholar 

  2. M.S. Dresselhaus, J. de Chim. Phys. 81, 739 (1984).

    CAS  Google Scholar 

  3. I.L. Spain, K.J. Volin, H.A. Goldberg, and I. Kalnin, J. Phys. Chem. Solids 44, 839 (1983).

    Article  CAS  Google Scholar 

  4. M. Endo, T. Koyama, and Y. Hishiyama, J. Appl. Phys. Jpn. 11, 2073 (1976).

    Article  Google Scholar 

  5. M. Endo and M. Shikata, Ohyobutsuri 54, 507 (1985);

    Google Scholar 

  6. M. Endo and H. Ueno, Extended Abstract on Graphite Intercalation Compounds, Materials Research Society, edited by P.C. Eklund, M.S. Dresselhaus, and G. Dresselhaus, (1984), p. 177.

    Google Scholar 

  7. J.A. Floro, S.M. Rossnagel, and R.S. Robinson, J. Vac. Sci. Technol. Al, 1398 (1983).

    Google Scholar 

  8. T.C. Chieu, G. Timp, M.S. Dresselhaus, M. Endo, and A.W. Moore, Phys. Rev. B27, 3686 (1983).

    Article  CAS  Google Scholar 

  9. P.C. Eklund, (this volume) p. 323.

    Google Scholar 

  10. S.A. Solin, (this volume) p. 173.

    Google Scholar 

  11. M.S. Dresselhaus and G. Dresselhaus, Light-Scattering in Solids III, Vol. 51 of Topics in Applied Physics, edited by M. Cardona and G. Giintherodt (Springer, Berlin, 1982), p..3.

    Google Scholar 

  12. P.C. Eklund, (this volume) p. 163.

    Google Scholar 

  13. G. Hooley, in “Preparation and Crystal Growth of Materials with Layered Structures”, edited by R.M.A. Leith (Dordrecht: Reidel) p. 1 (1977).

    Google Scholar 

  14. M. Endo, T.C. Chieu, G. Timp, M.S. Dresselhaus, and B.S. Elman, Phys. Rev. B28, 6982 (1983).

    Article  CAS  Google Scholar 

  15. J. Shioya, H. Matsubara, and S. Murakami, Synthetic Metals 14, 113 (1986).

    Article  CAS  Google Scholar 

  16. J.R. Gaier, NASA Technical Memorandum 87275.

    Google Scholar 

  17. M.S. Dresselhaus, (this volume) p. 213.

    Google Scholar 

  18. S.A. Solin, (this volume) p. 313.

    Google Scholar 

  19. L. McNeil, J. Steinbeck, L. Salamanca-Riba, and G. Dresselhaus, Carbon 24, 73 (1986).

    Article  CAS  Google Scholar 

  20. X.W. Qian, S.A. Solin, and J.R. Gaier, (this volume) p. 477.

    Google Scholar 

  21. M. Endo, T.C. Chieu, G. Timp, M.S. Dresselhaus, and B.S. Elman, Synthetic Metals 8, 251 (1983).

    Article  CAS  Google Scholar 

  22. G. Timp and M.S. Dresselhaus, J. Phys. C 17, 2641 (1984).

    Article  CAS  Google Scholar 

  23. L. Salamanca-Riba, G. Braunstein, M.S. Dresselhaus, J.M. Gibson and M. Endo, Nucl. Instr. Meth. Phys. Res. B7/8, 487 (1985);

    Google Scholar 

  24. M. Endo, L. Salamanca-Riba, G. Dresselhaus, and J.M. Gibson Chimie Physique 8, 803 (1984).

    Google Scholar 

  25. J.-P. Issi, (this volume) p. 347.

    Google Scholar 

  26. I.L. Kalnin and H.A. Goldberg, Synthetic Metals 8, 277 (1983).

    Article  CAS  Google Scholar 

  27. C. Manini, J.-F. Marêché, and E. McRae, Synthetic Metals 8, 261 (1983).

    Article  CAS  Google Scholar 

  28. D.A. Jaworske and J.D. Miller, NASA Technical Memorandum 87217.

    Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, Sixth Edition (J. Wiley Si Sons, New York ) (1985).

    Google Scholar 

  30. L. Piraux, J.-P. Issi, L. Salamanca-Riba, and M.S. Dresselhaus, Synthetic Metals (in press).

    Google Scholar 

  31. M.Z. Tahar, M.S. Dresselhaus, and M. Endo, Carbon 24, 67 (1986).

    Article  CAS  Google Scholar 

  32. L. Piraux, B. Nysten, J.-P. Issi, L. Salamanca-Riba, and M.S. Dresselhaus, Solid State Commun. 58, 265 (1986).

    Article  CAS  Google Scholar 

  33. J. Heremans, M. Shayegan, M.S. Dresselhaus, and J.-P. Issi, Phys. Rev. B26, 3338 (1982);

    CAS  Google Scholar 

  34. J.-P. Issi, J. Heremans, and M.S. Dresselhaus, Phys. Rev. B27, 1333 (1983).

    Article  CAS  Google Scholar 

  35. V. Natarajan, J.A. Woollam, and A. Yavrouian, Synthetic Metals 8, 291 (1983).

    Article  CAS  Google Scholar 

  36. M. Endo, Y. Yamagishi, and M. Inagaki, Synthetic Metals 7, 203 (1983);

    Article  CAS  Google Scholar 

  37. Y. Maeda, H. Kitamura, E. Itoh, and M. Inagaki, Synthetic Metals 7, 211 (1983).

    Article  CAS  Google Scholar 

  38. L.D. Woolf, J. Chin, Y.R. Lin-Liu, and H. Ikezi, Phys. Rev. B30, 861 (1984).

    Article  CAS  Google Scholar 

  39. L. Piraux, V. Bayot, J.-P. Michenaud, J.-P. Issi, J.F. Marêché, and E. McRae, Solid State Commun. (in press); L.Piraux, (this volume) p. 375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dresselhaus, M.S. (1986). Intercalated Graphite Fibers. In: Dresselhaus, M.S. (eds) Intercalation in Layered Materials. NATO ASI Series, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5556-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5556-5_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5558-9

  • Online ISBN: 978-1-4757-5556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics