Advertisement

Intercalated Graphite Fibers

  • M. S. Dresselhaus
Part of the NATO ASI Series book series (NSSB, volume 148)

Abstract

The novel geometry of graphite fibers facilitates the study of various intercalation phenomena and is of particular importance for practical applications of GICs. Also in their pristine form, graphite fibers offer unique advantages over other forms of graphite for the study of novel phenomena and for a variety of practical applications. The synthesis, structure and properties of intercalated graphite fibers have much in common with intercalated bulk graphite host materials, such as kish graphite and highly oriented pyrolytic graphite (HOPG),1 which are extensively discussed in this volume. We therefore briefly review here the structure and properties of intercalated graphite fibers and the differences between GICs prepared from fiber and bulk graphite host materials.

Keywords

Fiber Length Graphite Fiber Synthetic Metal Graphite Intercalation Compound Mesophase Pitch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.W. Moore, Chemistry and Physics of Carbon, 11,ed. P.L. Walker and P.A. Thrower (New York, Dekker), p. 69.Google Scholar
  2. 2.
    M.S. Dresselhaus, J. de Chim. Phys. 81, 739 (1984).Google Scholar
  3. 3.
    I.L. Spain, K.J. Volin, H.A. Goldberg, and I. Kalnin, J. Phys. Chem. Solids 44, 839 (1983).CrossRefGoogle Scholar
  4. 4.
    M. Endo, T. Koyama, and Y. Hishiyama, J. Appl. Phys. Jpn. 11, 2073 (1976).CrossRefGoogle Scholar
  5. 5.
    M. Endo and M. Shikata, Ohyobutsuri 54, 507 (1985);Google Scholar
  6. M. Endo and H. Ueno, Extended Abstract on Graphite Intercalation Compounds, Materials Research Society, edited by P.C. Eklund, M.S. Dresselhaus, and G. Dresselhaus, (1984), p. 177.Google Scholar
  7. 6.
    J.A. Floro, S.M. Rossnagel, and R.S. Robinson, J. Vac. Sci. Technol. Al, 1398 (1983).Google Scholar
  8. 7.
    T.C. Chieu, G. Timp, M.S. Dresselhaus, M. Endo, and A.W. Moore, Phys. Rev. B27, 3686 (1983).CrossRefGoogle Scholar
  9. 8.
    P.C. Eklund, (this volume) p. 323.Google Scholar
  10. 9.
    S.A. Solin, (this volume) p. 173.Google Scholar
  11. 10.
    M.S. Dresselhaus and G. Dresselhaus, Light-Scattering in Solids III, Vol. 51 of Topics in Applied Physics, edited by M. Cardona and G. Giintherodt (Springer, Berlin, 1982), p..3.Google Scholar
  12. 11.
    P.C. Eklund, (this volume) p. 163.Google Scholar
  13. 12.
    G. Hooley, in “Preparation and Crystal Growth of Materials with Layered Structures”, edited by R.M.A. Leith (Dordrecht: Reidel) p. 1 (1977).Google Scholar
  14. 13.
    M. Endo, T.C. Chieu, G. Timp, M.S. Dresselhaus, and B.S. Elman, Phys. Rev. B28, 6982 (1983).CrossRefGoogle Scholar
  15. 14.
    J. Shioya, H. Matsubara, and S. Murakami, Synthetic Metals 14, 113 (1986).CrossRefGoogle Scholar
  16. 15.
    J.R. Gaier, NASA Technical Memorandum 87275.Google Scholar
  17. 16.
    M.S. Dresselhaus, (this volume) p. 213.Google Scholar
  18. 17.
    S.A. Solin, (this volume) p. 313.Google Scholar
  19. 18.
    L. McNeil, J. Steinbeck, L. Salamanca-Riba, and G. Dresselhaus, Carbon 24, 73 (1986).CrossRefGoogle Scholar
  20. 19.
    X.W. Qian, S.A. Solin, and J.R. Gaier, (this volume) p. 477.Google Scholar
  21. 20.
    M. Endo, T.C. Chieu, G. Timp, M.S. Dresselhaus, and B.S. Elman, Synthetic Metals 8, 251 (1983).CrossRefGoogle Scholar
  22. 21.
    G. Timp and M.S. Dresselhaus, J. Phys. C 17, 2641 (1984).CrossRefGoogle Scholar
  23. 22.
    L. Salamanca-Riba, G. Braunstein, M.S. Dresselhaus, J.M. Gibson and M. Endo, Nucl. Instr. Meth. Phys. Res. B7/8, 487 (1985);Google Scholar
  24. M. Endo, L. Salamanca-Riba, G. Dresselhaus, and J.M. Gibson Chimie Physique 8, 803 (1984).Google Scholar
  25. 23.
    J.-P. Issi, (this volume) p. 347.Google Scholar
  26. 24.
    I.L. Kalnin and H.A. Goldberg, Synthetic Metals 8, 277 (1983).CrossRefGoogle Scholar
  27. 25.
    C. Manini, J.-F. Marêché, and E. McRae, Synthetic Metals 8, 261 (1983).CrossRefGoogle Scholar
  28. 26.
    D.A. Jaworske and J.D. Miller, NASA Technical Memorandum 87217.Google Scholar
  29. 27.
    C. Kittel, Introduction to Solid State Physics, Sixth Edition (J. Wiley Si Sons, New York ) (1985).Google Scholar
  30. 28.
    L. Piraux, J.-P. Issi, L. Salamanca-Riba, and M.S. Dresselhaus, Synthetic Metals (in press).Google Scholar
  31. 29.
    M.Z. Tahar, M.S. Dresselhaus, and M. Endo, Carbon 24, 67 (1986).CrossRefGoogle Scholar
  32. 30.
    L. Piraux, B. Nysten, J.-P. Issi, L. Salamanca-Riba, and M.S. Dresselhaus, Solid State Commun. 58, 265 (1986).CrossRefGoogle Scholar
  33. 31.
    J. Heremans, M. Shayegan, M.S. Dresselhaus, and J.-P. Issi, Phys. Rev. B26, 3338 (1982);Google Scholar
  34. J.-P. Issi, J. Heremans, and M.S. Dresselhaus, Phys. Rev. B27, 1333 (1983).CrossRefGoogle Scholar
  35. 32.
    V. Natarajan, J.A. Woollam, and A. Yavrouian, Synthetic Metals 8, 291 (1983).CrossRefGoogle Scholar
  36. 33.
    M. Endo, Y. Yamagishi, and M. Inagaki, Synthetic Metals 7, 203 (1983);CrossRefGoogle Scholar
  37. Y. Maeda, H. Kitamura, E. Itoh, and M. Inagaki, Synthetic Metals 7, 211 (1983).CrossRefGoogle Scholar
  38. 34.
    L.D. Woolf, J. Chin, Y.R. Lin-Liu, and H. Ikezi, Phys. Rev. B30, 861 (1984).CrossRefGoogle Scholar
  39. 35.
    L. Piraux, V. Bayot, J.-P. Michenaud, J.-P. Issi, J.F. Marêché, and E. McRae, Solid State Commun. (in press); L.Piraux, (this volume) p. 375.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. S. Dresselhaus
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations