Optical Properties of Donor-Type Graphite Intercalation Compounds

  • P. C. Eklund
  • M. H. Yang
  • G. L. Doll
Part of the NATO ASI Series book series (NSSB, volume 148)


Pristine graphite is a highly anisotropic semimetal exhibiting weakly overlapping conduction and valence bands with approximate mirror symmetry. These π bands exhibit small basal plane electronic masses. In the lowest order of approximation (rigid band model [1]) the electrical properties of donor- and acceptor-type graphite intercalation compounds (GICs) [2,3] are determined by shifting the Fermi level up (donors) or down (acceptors) in the rigid π band, consistent with the charge transferred between the carbon and intercalate layers. The rigid band model, however, does not address the effects which might arise from the new c-axis periodicity (stage index), in-plane zone folding [4] of the π band associated with the intercalate layer superlattice (if one exists), or the intercalate-derived states themselves. Considerable progress has been made in our ability to account for these effects, and this has come from the interplay of energy band theory and many diverse experimental probes.


Dielectric Function Plasma Frequency Graphite Intercalation Compound Interband Absorption Inter Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Dresselhaus, G. Dresselhaus, and J.E. Fischer, Phys. Rev. B 15, 3180 (1977)CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus and G. Dresselhaus, Advances in Physics, 30, 139 (1981) .Google Scholar
  3. 3.
    S.A. Solin, Advances in Chemical Physics 49, 455 (1982).CrossRefGoogle Scholar
  4. 4.
    S.Y. Leung and G. Dresselhaus, Phys. Rev. B 24, 3490 (1981).CrossRefGoogle Scholar
  5. 5.
    C. Rigaux, “Optical Properties of Acceptor-Type Graphite Intercalation Compounds”, in this volume,p. 237.Google Scholar
  6. 6.
    J. Blinowski, N.H. Hau, C. Rigaux, J.P. Vieren, R. LeToulec, G. Furdin, H. Hérold, and J. Melin, J. Phys.(Paris) 41, 47 (1980).Google Scholar
  7. 7.
    T. Ohno, N. Shima, and H. Kamimura, Solid State Commun. 44, 761 (1982) .Google Scholar
  8. 8.
    G.L. Doll, M.H. Yang, and P.C. Eklund, Bull. Am. Phys. Soc. 31, 687 (1986) . (submitted Phys. Rev. B) .Google Scholar
  9. 9.
    J.M. Zhang, P.C. Eklund, S.W. Qian, and S.A. Solin, Bull. Am. Phys. Soc. 31, 687 (1986).Google Scholar
  10. 10.
    M.H. Yang and P.C. Eklund, Bull. Am. Phys. Soc. 31, 689 (1986).Google Scholar
  11. 11.
    R. Saito, Ph.D. Thesis, University of Tokyo, Tokyo, Japan (1984), (unpublished).Google Scholar
  12. 12.
    D.P. DiVincenzo and S. Rabii, Phys. Rev. B 25, 4110 (1982).CrossRefGoogle Scholar
  13. 13.
    N.A.W. Holzwarth, DPDiVincenzo, R.C. Tatar, and S-7-Rabii, Intl. J. Quantum Chem. 23, 1223 (1983).CrossRefGoogle Scholar
  14. 14.
    N. Chen and S. Rabii, Phys. Rev. B 31, 4784 (1985).Google Scholar
  15. 15.
    J.E. Fischer, J.M. Bloch, C.C. Shieh, M.E. Preil, and K. Jelley, Phys. Rev. B 31, 4773 (1985).CrossRefGoogle Scholar
  16. 16.
    M.H. Yang, R.E. Heinz, and P.C. Eklund, Bull. Am. Phys. Soc. 31, 689 (1986) .Google Scholar
  17. 17.
    P.C. Eklund, “Optical Spectroscopy of the Lattice Modes in GICs”,in this volume, p. 323.Google Scholar
  18. 18a.
    J.N. Hodgson, Optical Absorption and Dispersion in Solids ( Chapman & Hall, London, 1970 ), pp. 41–56.CrossRefGoogle Scholar
  19. 18b.
    F.J. Wooten, Optical Properties of Solids (Academic Press, New York, 1972) , p. 90.Google Scholar
  20. 19.
    Ibid, p. 248.Google Scholar
  21. 20.
    E.A. Taft and H.R. Phillipp, Phys. Rev. 138, A 197 (1965).Google Scholar
  22. 21.
    J.J. Ritsko and E.J. Mele, Phys. Rev. B 21, 730 (1980).CrossRefGoogle Scholar
  23. 22.
    E, is defined here as E, = 1 + cinter(w=0), where the factor 1 arises from the Drude term.Google Scholar
  24. 23.
    Note: For wpr» 1, El,free is not sensitive to T.Google Scholar
  25. 24.
    J.J. Murray and A.R. Ubbelohde, Proc. R. Soc. A 312, 371 (1969).CrossRefGoogle Scholar
  26. 25.
    T. Ohno and H. Kamimura, J. Phys. Soc. Jpn., 52, 223 (1983).CrossRefGoogle Scholar
  27. 26.
    J. Blinowski and C. Rigaux, J. Phys. (Paris) 41, 667 (1980).CrossRefGoogle Scholar
  28. 27.
    K.W.-K. Shung, Phys. Rev. B (to be published).Google Scholar
  29. 28.
    D.M. Hoffman, R.E. Heinz, G.L. Doll, and P.C. Eklund, Phys. Rey. B 32, 1278 (1985) .Google Scholar
  30. 29.
    D. Guérard, C. Takoudjou, and F. Rousseaux, Synth. Met. 7, 43 (1983).CrossRefGoogle Scholar
  31. 30.
    N.A.W. Holzwarth, Phys. Rev. B 21, 3665 (1980).Google Scholar
  32. 31.
    H. Zaleski, P.K. Ummat, ànd W.R. Datars, J. Phys. C 17, 3167 (1984).Google Scholar
  33. 32.
    P. Lagrange, A. Bendriss-Rerhrhaye, J.F. Mareche, and E. McRae, Synth. Met 12, 201 (1985).CrossRefGoogle Scholar
  34. 33.
    M.E. Preil, L.A. Grunes, J.J. Ritsko, and J.E. Fischer, Phys. Rev. B 30, 5852 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. C. Eklund
    • 1
  • M. H. Yang
    • 1
  • G. L. Doll
    • 1
  1. 1.University of KentuckyLexingtonUSA

Personalised recommendations