Advertisement

Synthesis of Graphite Intercalation Compounds

  • P. C. Eklund
Part of the NATO ASI Series book series (NSSB, volume 148)

Abstract

The intercalation process involves a chemical reaction between a layered host material and reagent which results in the insertion of new atomic or molecular layers, termed intercalate layers, between the host layers. In graphite, this reaction takes advantage of the weak (van der Waals) bonds between carbon layers. The intralayer hexagonal organization of the carbon atoms is not affected by intercalation. Typical syntheses of graphite intercalation compounds (GICs) take place at moderate temperatures (T< 700°C), and occur on a relatively short time scale (several, minutes to several days). Intercalation reactions are known to occur between graphite and literally hundreds of reagents. The compounds are, for the most part, very unstable in the open laboratory environment, and they must therefore be handled with extreme care and encapsulated in vacuum or in an overpressure of inert gas or reactant. In many cases, the samples are sufficiently unstable to merit in situ investigation of the physical properties.

Keywords

Reaction Tube Pyrolytic Graphite Highly Oriented Pyrolytic Graphite High Carbon Steel Intercalation Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Solin, Adv. Chem. Phys. 49, 455 (1982).CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
  3. 3.
    A. Herold, in Physics and Chemistry of Materials with Layered Structures, Vol. 6, ed. F. Levy ( Dordrecht, Reidel, 1979 ), p. 323.Google Scholar
  4. 4.
    L. Ebert, Am. Rev. Mat. Sci. 6, 181 (1876).Google Scholar
  5. 5.
    E. Stumpp, Mat. Sci. Engng. 31, 53, (1977)CrossRefGoogle Scholar
  6. 6.
    J.O. Bessenhard, H. Moewald and J.J. Nickl, Syn. Met. 3, 187 (1981).CrossRefGoogle Scholar
  7. 7.
    M. El Makrini, D. Guerard. P. Lagrange and A. Herold, physica 99B 481 (1980).Google Scholar
  8. 8.
    P. Lagrange, M. El Makrini, D. Guérard and A. Hérold, Syn. Met. 2, 191 (1980).CrossRefGoogle Scholar
  9. 9.
    D. Guerard, P. Lagrange, M. El Makrini and A. Herold, Syn. Met. 3, 15 (1981).CrossRefGoogle Scholar
  10. 10.
    F. Beguin, R. Setton, A. Hamwi and P. Touzain, Mat. Sci. Eng. 40, 167 (1979).CrossRefGoogle Scholar
  11. 11.
    F. Seguin, R. Setton. L. Facchini, A.P. Legrand, G. Merle and C. Mai Syn. Met. 2, 161 (1980).CrossRefGoogle Scholar
  12. 12.
    Proceedings of the International Symposium on Graphite Intercalation Compounds Syn. Met. 12 (1985).Google Scholar
  13. 13.
    M.S. Dresselhaus, Superlattices and Intercalation Compounds, in this volume, p. 1.Google Scholar
  14. 14.
    D.M. Hwang, X.W. Qian and S.A. Solin, Phys. Rev. Lett. 53, 1478 (1984).CrossRefGoogle Scholar
  15. 15.
    D.F. Shriver, The Manipulation of Air-sensitive Compounds, ( McGraw-Hill, New York, 1969 ).Google Scholar
  16. 16.
    M.S. Dresselhaus, Graphite Fibers, in this volume, p. 461.Google Scholar
  17. 17.
    A.W. Moore, in Physics and Chemistry of Carbon, Vol. 11, ed. P.L. Walker and P.S. Thrower ( Dekker, New York, 1973 ) p. 69.Google Scholar
  18. 18.
    J.G. Hooley, Carbon 10, 155 (1972), Mat. Sci, Engng. 31, 17 (1977).Google Scholar
  19. 19.
    J.G. Hooley, W.P. Garby and J. Valentin, Carbon 3, 7 (1965).CrossRefGoogle Scholar
  20. 20.
    M.B. Dowell, Mat. Sci. Engng. 31, 129 (1977).CrossRefGoogle Scholar
  21. 21.
    D.E. Nixon and G.S. Parry, J. Phys. D, 1, 291 (1968).CrossRefGoogle Scholar
  22. 22.
    R. Nishitani, Y. Uno and H. Suematsu, in Summary Report The Study of Graphite Intercalation Compounds eds. S. Tanuma and H. Kamimura, p. 25 (1984).Google Scholar
  23. 23.
    See for example, J.O. Bessenhard, H. Moewald, J.J. Nickl, W. Biberacher and W. Foag, Syn. Met. 7, 185 (1983).Google Scholar
  24. 24.
    P.C. Eklund, E.T. Arakawa, J.L. Zarestky, W.A. Kamitakahara and G.D. Mahan, Syn. Met. 12, 97 (1985).CrossRefGoogle Scholar
  25. 25.
    S.K. Hark, B.R. York, S.D. Mahanti and S.A. Solin, Solid St. Commun. 50, 595 (1984).CrossRefGoogle Scholar
  26. 26.
    G.L. Doll and P.C. Eklund, unpublished.Google Scholar
  27. 27.
    K. Watanabe, T. Kondow, T. Onishi and K. Tamura, Chem. Lett. 51 (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. C. Eklund
    • 1
  1. 1.University of KentuckyLexingtonUSA

Personalised recommendations