Advertisement

Pulmonary Endothelial Angiotensin Converting Enzyme Activity in Lung Injury

  • S. E. Orfanos
  • A. Kotanidou
  • C. Roussos

Abstract

The intimai lining of all blood vessels is composed of a single continuous layer of simple squamous epithelial cells of mesenchymal origin, which are called endothelial cells. In the past, vascular endothelium was mainly credited for being part of the semi-permeable barrier that separates blood from the surrounding tissues and, in the lungs, blood from air. However, extensive research performed during the last twenty-five years proved that the aforementioned ‘static’ endothelial feature was false, and that vascular endothelium is instead a ‘dynamic’ organ possessing numerous physiologic, immunologic, and metabolic functions. In the human lung, endothelial cells occupy an area with a surface of approximately 130 m2 [1]. The strategic location of the lungs, and the tremendous surface area of the pulmonary capillary endothelium allows the latter to filter the entire circulating blood volume before it enters the systemic circulation. Thus, pulmonary endothelial functional and structural integrity are essential for adequate pulmonary and systemic cardiovascular homeostasis.

Keywords

Lung Injury Acute Lung Injury Acute Respiratory Distress Syndrome Substrate Hydrolysis Lung Injury Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simionescu M (1991) Lung endothelium: Structure-function correlates. In: Crystal RG, West JB (eds) The Lung: Scientific Foundations. Raven Press, New York, pp 301–312Google Scholar
  2. 2.
    Hassoun PM, Fanburg BL, Junod AF (1991) Metabolic functions. In: Crystal RG, West JB (eds) The Lung: Scientific Foundations Raven Press, New York, pp 313–327Google Scholar
  3. 3.
    West JB (2001) Pulmonary embolism. In: West JB (ed) Pulmonary Physiology and Pathophysiology: An Integrated, Case-Based Approach. Lippincott Williams & Wilkins, New York, pp 84–99Google Scholar
  4. 4.
    Orfanos SE, Catravas JD (1993) Metabolic functions of the pulmonary endothelium. In: Yacoub M, Pepper J (eds) Annual Review of Cardiac Surgery, 6th edn. Current Science, London, pp 52–59Google Scholar
  5. 5.
    Ryan JW, Ryan US (1982) Processing of endogenous polypeptides by the lung. Annu Rev Physiol 44: 241–255PubMedCrossRefGoogle Scholar
  6. 6.
    Catravas JD, Orfanos SE (1997) Pathophysiologic functions of endothelial angiotensin-converting enzyme. In: Born GVR, Schwartz CJ (eds) Vascular Endothelium: Physiology, Pathology and Therapeutic Opportunities. Schattauer, Stuttgart, pp 193–204Google Scholar
  7. 7.
    Ryan US, Ryan JW, Whitaker C, Chiu A (1976) Localization of angiotensin-converting enzyme (kinase II). Immunocytochemistry and immunofluorescence. Tissue Cell 8: 125–146Google Scholar
  8. 8.
    Pitt BR, Lister G, Gillis CN (1987) Hemodynamic effects on lung metabolic function. In: Ryan US (ed) Pulmonary Endothelium in Health and Disease. Marcel Dekker, New York, pp 65–87Google Scholar
  9. 9.
    Ryan JW, Catravas JD (1991) Angiotensin converting-enzyme as an indicator of pulmonary microvascular function In: Hollinger MA (ed) Focus on Pulmonary Pharmacology & Toxicology. CRC Press, Boca Raton, pp 183–210Google Scholar
  10. 10.
    Ryan JW (1987) Assay of pulmonary endothelial surface enzymes in vivo. In: Ryan US (ed) Pulmonary Endothelium in Health and Disease. Marcel Dekker, New York USA, pp 161–188Google Scholar
  11. 11.
    Segel IH (1975) Enzyme Kinetics. Wiley, New YorkGoogle Scholar
  12. 12.
    Cziraki A, Ryan JW, Horvarth I, Fisher LE, Parkerson JB, Catravas JD (1995) Comparison of the hydrolyses of 2 synthetic ACE substrates by rabbit lung in vivo. FASEB J 9: A719 (Abst)Google Scholar
  13. 13.
    Catravas JD, White RE (1984) Kinetics of pulmonary angiotensin-converting enzyme and 5’-nucleotidase in vivo. J Appl Physiol 57: 1173–1181PubMedGoogle Scholar
  14. 14.
    Orfanos SE, Langleben D, Khoury J, et al (1999) Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation 99: 1593–1599PubMedCrossRefGoogle Scholar
  15. 15.
    Orfanos SE, Armaganidis A, Glynos C, et al (2000) Pulmonary capillary endothelium-bound angiotensin converting enzyme activity in acute lung injury. Circulation 102: 20112018Google Scholar
  16. 16.
    Murray JF, Matthay MA, Luce JM, Flick MR (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138: 720–723PubMedCrossRefGoogle Scholar
  17. 17.
    Orfanos SE, Chen XL, Ryan JW, Chung AYK, Burch SE, Catravas JD (1994). Assay of pulmonary microvascular endothelial angiotensin-converting enzyme in vivo: comparison of three probes. Toxicol Appl Pharmacol 124: 99–111PubMedCrossRefGoogle Scholar
  18. 18.
    Toivonen HJ, Catravas JD (1991) Effects of blood flow on lung ACE kinetics: Evidence for microvascular recruitment. J Appl Physiol 71: 2244–2254Google Scholar
  19. 19.
    Orfanos SE, Ehrhart IC, Barman S, Hofman WF, Catravas JD (1997) Endothelial ectoenzyme assays estimate perfused capillary surface area in the dog lung. Microvasc Res 54: 145–155PubMedCrossRefGoogle Scholar
  20. 20.
    Dupuis J, Goresky CA, Ryan JW, Rouleau JL, Bach GG (1992) Pulmonary angiotensin-converting enzyme substrate hydrolysis during exercise. J Appl Physiol 72: 1868–1886PubMedGoogle Scholar
  21. 21.
    Dupuis J, Goresky CA, Junear C (1990) Use of norepinephrine uptake to measure lung capillary recruitment with exercise. J Appl Physiol 68: 700–713PubMedGoogle Scholar
  22. 22.
    Dupuis J, Goresky CA, Rouleau JL, Simard A, Schwab AJ (1996) Kinetics of pulmonary uptake of serotonin during exercise in the dog. J Appl Physiol 80: 30–46PubMedCrossRefGoogle Scholar
  23. 23.
    Lazo JS, Catravas JD, Gillis CN (1981) Reduction in rabbit serum and pulmonary angiotensin converting enzyme after subacute bleomycin treatment Biochem Pharmacol 30: 2577 2584Google Scholar
  24. 24.
    Dobuler KJ, Catravas JD, Gillis CN (1982) Early detection of oxygen-induced lung injury in conscious rabbits: reduced in vivo activity of angiotensin converting enzyme and removal of 5-hydoxytryptamine Am Rev Respir Dis 126: 534–539Google Scholar
  25. 25.
    Chen XL, Orfanos SE, Catravas JD (1992) Effects of indomethacin on PMA-induced pulmonary endothelial enzyme dysfunction, in vivo. Am J Physiol 262: L153 - L162PubMedGoogle Scholar
  26. 26.
    Ehrhart IC, Orfanos SE, McCloud LL, Sickles DW, Hoffman WF, Catravas JD (1999) Vascular recruitment increases evidence of lung injury. Crit Care Med 27: 120–129PubMedCrossRefGoogle Scholar
  27. 27.
    Orfanos SE, Chen XL, Burch SE, Ryan JW, Chunk AYK, Catravas JD (1994) Radiation-induced early pulmonary endothelial ectoenzyme dysfunction in vivo: effect of indomethacin. Toxicol Appl Pharmacol 124: 112–122PubMedCrossRefGoogle Scholar
  28. 28.
    Catravas JD, Burch SE, Sprulock BO, Mills LR (1988) Early effects of ionising radiation on pulmonary endothelial angiotensin converting enzyme and 5’-nucleotidase, in vivo. Toxicol Appl Pharamacol 94: 342–355CrossRefGoogle Scholar
  29. 29.
    Orfanos SE, Parkerson JB, Chen XL, et al (2000) Reduced lung endothelial angiotensin-converting enzyme activity in Watanabe hyperlipidemic rabbits in vivo. Am J Physiol 278: L1280 - L1288Google Scholar
  30. 30.
    Toivonen HJ, Catravas JD (1987) Effects of acid-base imbalance on pulmonary angiotensinconverting enzyme, in vivo. J Appl Physiol 63: 1629–1637PubMedGoogle Scholar
  31. 31.
    Toivonen HI, Catravas JD (1986) Effects of alveolar pressure on lung angiotensin-converting enzyme, in vivo. J Appl Physiol 61: 1041–1050PubMedGoogle Scholar
  32. 32.
    Orfanos SE, Langleben D, Armaganidis A, et al (1998) Patterns of an angiotensin-converting enzyme substrate hydrolysis by PCEB-ACE in critically-ill patients. In: Catravas JD, Callow AD, Ryan US (eds) Vascular Endothelium Pharmacologic and Genetic Manipulations. Plenum Press, New York, pp 269–271Google Scholar
  33. 33.
    Pittet JF, Mackersie RC, Martin TR, Matthay MA (1997) Biological markers of acute lung injury: prognostic and pathogenic significance. Am J Respir Crit Care Med 155: 1187–1205PubMedCrossRefGoogle Scholar
  34. 34.
    Orfanos SE, Psevdi E, Stratigis N, et al (2001) Pulmonary capillary endothelial dysfunction in early systemic sclerosis. Arthritis Rheum 44: 902–911PubMedCrossRefGoogle Scholar
  35. 35.
    Harisson NK, Myers AR, Corrin B, et al (1991) Structural features of interstitial lung disease in systemic sclerosis. Am Rev Respir Dis 144: 706–713CrossRefGoogle Scholar
  36. 36.
    Bernard GR, Artigas A, Brigham KL, et al, and the Consensus Committee (1994) The American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 49: 818–824Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • S. E. Orfanos
  • A. Kotanidou
  • C. Roussos

There are no affiliations available

Personalised recommendations