Apoptosis in Pneumonia

  • B. Guery
  • J. F. Pittet
  • P. Marchetti


In their initial work published in 1972, Kerr and Currie described a new type of cell death characterized by morphological changes distinct from the features observed in necrosis [1]. The term apoptosis, from the Greek word meaning ‘falling off’, was adopted to describe this highly conserved genetic program leading to regulated cellular self-destruction. Subsequent investigations showed that this programmed cell death was crucial during fetal development and critical for controlling harmful mechanisms triggered by environmental stresses. Recent literature has defined new roles for apoptosis in the normal and injured lung. Apoptosis plays an important role not only during postnatal lung development [2] but also in the remodeling of the lung after acute lung injury (ALI) for both the elimination of excess alveolar epithelial and mesenchymal cells from resolving lesions [3, 4].


Acute Lung Injury Respir Crit Reactive Nitrogen Species Lung Epithelial Cell Alveolar Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  2. 2.
    Schittny JC, Djonov V, Fine A, Burri PH (1998) Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18: 786–793PubMedCrossRefGoogle Scholar
  3. 3.
    Bardales RH, Xie SS, Schaefer RF, Hsu SM (1996) Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol 149: 845–852PubMedGoogle Scholar
  4. 4.
    Polunovsky VA, Chen B, Henke C, et al (1993) Role of mesenchymal cell death in lung remodeling after injury. J Clin Invest 92: 388–397PubMedCrossRefGoogle Scholar
  5. 5.
    Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407: 784–788PubMedCrossRefGoogle Scholar
  6. 6.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281: 1305–1308PubMedCrossRefGoogle Scholar
  7. 7.
    Itoh N, Yonehara S, Ishii A, et al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243PubMedCrossRefGoogle Scholar
  8. 8.
    Tanaka M, Suda T, Takahashi T, Nagata S (1995) Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J 14: 1129–1135PubMedGoogle Scholar
  9. 9.
    Ponton A, Clement MV, Stamenkovic I (1996) The CD95 (APO-1/Fas) receptor activates NF-kappaB independently of its cytotoxic function. J Biol Chem 271: 8991–8995PubMedCrossRefGoogle Scholar
  10. 10.
    Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274: 782–784PubMedCrossRefGoogle Scholar
  11. 11.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322–1326PubMedCrossRefGoogle Scholar
  12. 12.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776PubMedCrossRefGoogle Scholar
  13. 13.
    Mantell L, Kazzaz J, Xu J, et al (1997) Unscheduled apoptosis during acute inflammatory lung injury. Cell Death Diff 4: 600–607CrossRefGoogle Scholar
  14. 14.
    Matthay MA, Wiener-Kronish JP (1990) Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis 142: 1250–1257PubMedCrossRefGoogle Scholar
  15. 15.
    Fine A, Anderson NL, Rothstein TL, Williams MC, Gochuico BR (1997) Fas expression in pulmonary alveolar type II cells. Am J Physiol 273: L64 - L71PubMedGoogle Scholar
  16. 16.
    Fine A, Janssen-Heininger Y, Soultanakis RP, Swisher SG, Uhal BD (2000) Apoptosis in lung pathophysiology. Am J Physiol 279: L423 - L427Google Scholar
  17. 17.
    Wen LP, Madani K, Fahrni JA, Duncan SR, Rosen GD (1997) Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-gamma and Fas. Am J Physiol 273: L921 - L929PubMedGoogle Scholar
  18. 18.
    Hamann KJ, Dorscheid DR, Ko FD, et al (1998) Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am J Respir Cell Mol Biol 19: 537–542PubMedCrossRefGoogle Scholar
  19. 19.
    Hagimoto N, Kuwano K, Kawasaki M, et al (1999) Induction of interleukin-8 secretion and apoptosis in bronchiolar epithelial cells by Fas ligation. Am J Respir Cell Mol Biol 21: 436445Google Scholar
  20. 20.
    Matute-Bello G, Liles WC, Steinberg KP, et al (1999) Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury ( ARDS ). J Immunol 163: 2217–2225Google Scholar
  21. 21.
    Matute-Bello G, Winn RK, Jonas M, et al (2001) Fas (CD95) Induces alveolar epithelial cell apoptosis in vivo: Implications for acute pulmonary inflammation. Am J Pathol 158: 153161Google Scholar
  22. 22.
    Matute-Bello G, Liles WC, Frevert CW, et al (2001) Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. Am J Physiol 281: L328 - L335Google Scholar
  23. 23.
    Hashimoto S, Kobayashi A, Kooguchi K, Kitamura Y, Onodera H, Nakajima H (2000) Upregulation of two death pathways of perforin/granzyme and FasL/Fas in septic acute respiratory distress syndrome. Am J Respir Crit Care Med 161: 237–243PubMedCrossRefGoogle Scholar
  24. 24.
    Hagimoto N, Kuwano K, Miyazaki H, et al (1997) Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol 17: 272278Google Scholar
  25. 25.
    Kuwano K, Miyazaki H, Hagimoto N, et al (1999) The involvement of Fas-Fas ligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol 20: 53–60PubMedCrossRefGoogle Scholar
  26. 26.
    Kuwano K, Hagimoto N, Kawasaki M, et al (1999) Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. f Clin Invest 104: 13–19Google Scholar
  27. 27.
    Kazzaz JA, Horowitz S, Xu J, et al (2000) Differential patterns of apoptosis in resolving and nonresolving bacterial pneumonia. Am J Respir Crit Care Med 161: 2043–2050PubMedCrossRefGoogle Scholar
  28. 28.
    Wang R, Alam G, Zagariya A, et al (2000) Apoptosis of lung epithelial cells in response to TNF-alpha requires angiotensin II generation de novo. J Cell Physiol 185: 253–259PubMedCrossRefGoogle Scholar
  29. 29.
    Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD (2000) Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol 279: L143 - L151Google Scholar
  30. 30.
    Wang R, Zagariya A, Ibarra-Sunga O, et al (1999) Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol 276: L885 - L889PubMedGoogle Scholar
  31. 31.
    Wang R, Ramos C, Joshi I, et al (1999) Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am J Physiol 277: L1158 - L1164PubMedGoogle Scholar
  32. 32.
    Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M (1998) Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 275: L1192 - L1199PubMedGoogle Scholar
  33. 33.
    Janssen YM, Matalon S, Mossman BT (1997) Differential induction of c-fos, c-jun, and apoptosis in lung epithelial cells exposed to ROS or RNS. Am J Physiol 273: L789 - L796PubMedGoogle Scholar
  34. 34.
    Edwards YS, Sutherland LM, Murray AW (2000) NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung. Am J Physiol 279: L1236 - L1242Google Scholar
  35. 35.
    Howlett CE, Hutchison JS, Veinot JP, Chiu A, Merchant P, Hiss H (1999) Inhaled nitric oxide protects against hyperoxia-induced apoptosis in rat lungs. Am J Physiol 277: L596 - L605PubMedGoogle Scholar
  36. 36.
    Keane J, Balcewicz-Sablinska MK, Remold HG, et al (1997) Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65: 298–304PubMedGoogle Scholar
  37. 37.
    Hutchison ML, Poxton IR, Govan JR (1998) Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66: 2033–2039PubMedGoogle Scholar
  38. 38.
    Baughman RP, Gunther KL, Rashkin MC, Keeton DA, Pattishall EN (1996) Changes in the inflammatory response of the lung during acute respiratory distress syndrome: prognostic indicators. Am J Respir Crit Care Med 154: 76–81PubMedCrossRefGoogle Scholar
  39. 39.
    Steinberg KP, Milberg JA, Martin TR, Maunder RJ, Cockrill BA, Hudson LD (1994) Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med 150: 113–122PubMedCrossRefGoogle Scholar
  40. 40.
    Serrao KL, Fortenberry JD, Owens ML, Harris FL, Brown LA (2001) Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am J Physiol 280: L298 - L305Google Scholar
  41. 41.
    Haslett C (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160: 55 - S11CrossRefGoogle Scholar
  42. 42.
    Alderson MR, Tough TW, Davis-Smith T, et al (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181: 71–77PubMedCrossRefGoogle Scholar
  43. 43.
    Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 184: 429–440PubMedCrossRefGoogle Scholar
  44. 44.
    Matute-Bello G, Liles WC, Radella F, et al (1997) Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med 156: 1969–1977PubMedCrossRefGoogle Scholar
  45. 45.
    Aggarwal A, Baker CS, Evans TW, Haslam PL (2000) G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Respir J 15: 895–901PubMedCrossRefGoogle Scholar
  46. 46.
    Matute-Bello G, Liles WC, Radella F, et al (2000) Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit Care Med 28: 1–7PubMedCrossRefGoogle Scholar
  47. 47.
    Brach MA, deVos S, Gruss HJ, Herrmann F (1992) Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood 80: 2920–2924PubMedGoogle Scholar
  48. 48.
    Aglietta M, Piacibello W, Sanavio F, et al (1989) Kinetics of human hemopoietic cells after in vivo administration of granulocyte-macrophage colony-stimulating factor. J Clin Invest 83: 551–557PubMedCrossRefGoogle Scholar
  49. 49.
    Nwakoby IE, Reddy K, Patel P, et al (2001) Fas-mediated apoptosis of neutrophils in sera of patients with infection. Infect Immun 69: 3343–3349PubMedCrossRefGoogle Scholar
  50. 50.
    Droemann D, Aries SP, Hansen F, et al (2000) Decreased apoptosis and increased activation of alveolar neutrophils in bacterial pneumonia. Chest 117: 1679–1684PubMedCrossRefGoogle Scholar
  51. 51.
    Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989) Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutro-phil leads to its recognition by macrophages. J Clin Invest 83: 865–875Google Scholar
  52. 52.
    Whyte MK, Meagher LC, MacDermot J, Haslett C (1993) Impairment of function in aging neutrophils is associated with apoptosis. J Immunol 150: 5124–5134PubMedGoogle Scholar
  53. 53.
    Ishii Y, Hashimoto K, Nomura A, et al (1998) Elimination of neutrophils by apoptosis during the resolution of acute pulmonary inflammation in rats. Lung 176: 89–98PubMedCrossRefGoogle Scholar
  54. 54.
    Cox G, Crossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12: 232–237PubMedCrossRefGoogle Scholar
  55. 55.
    Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90: 1513–1522PubMedCrossRefGoogle Scholar
  56. 56.
    Bingisser R, Stey C, Weller M, Groscurth P, Russi E, Frei K (1996) Apoptosis in human alveolar macrophages is induced by endotoxin and is modulated by cytokines. Am J Respir Cell Mol Biol 15: 64–70PubMedCrossRefGoogle Scholar
  57. 57.
    Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66: 336–342PubMedGoogle Scholar
  58. 58.
    Kahl BC, Goulian M, van Wamel W, et al (2000) Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun 68: 5385–5392PubMedCrossRefGoogle Scholar
  59. 59.
    Wesson CA, Liou LE, Todd KM, Bohach GA, Trumble WR, Bayles KW (1998) Staphylococcus aureus Agr and Sar global regulators influence internalization and induction of apoptosis. Infect Immun 66: 5238–5243PubMedGoogle Scholar
  60. 60.
    Wesson CA, Deringer J, Liou LE, Bayles KW, Bohach GA, Trumble WR (2000) Apoptosis induced by Staphylococcus aureus in epithelial cells utilizes a mechanism involving caspases 8 and 3. Infect Immun 68: 2998–3001PubMedCrossRefGoogle Scholar
  61. 61.
    Kuo CF, Wu JJ, Tsai PJ, et al (1999) Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect Immun 67: 126–130PubMedGoogle Scholar
  62. 62.
    Tsai PJ, Lin YS, Kuo CF, Lei HY, Wu JJ (1999) Group A Streptococcus induces apoptosis in human epithelial cells. Infect Immun 67: 4334–4339PubMedGoogle Scholar
  63. 63.
    Hauser AR, Engel JN (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67: 5530–5537PubMedGoogle Scholar
  64. 64.
    Rajan S, Catalano G, Bryan R, et al (2000) Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Respir Cell Mol Biol 23: 304–312PubMedCrossRefGoogle Scholar
  65. 65.
    Ojcius DM, Souque P, Perfettini JL, Dautry-Varsat A (1998) Apoptosis of epithelial cells and macrophages due to infection with the obligate intracellular pathogen Chlamydia psittaci. J Immunol 161: 4220–4226PubMedGoogle Scholar
  66. 66.
    Grassme H, Kirschnek S, Riethmueller J, et al (2000) CD95/CD95 ligand interactions on epithelial cells in host defense to pseudomonas aeruginosa. Science 290: 527–530PubMedCrossRefGoogle Scholar
  67. 67.
    Matute-Bello G, Frevert CW, Liles WC, et al (2001) Fas/Fas ligand system mediates epithelia) injury, but not pulmonary host defenses, in response to inhaled bacteria. Infect Immun 69: 5768–5776PubMedCrossRefGoogle Scholar
  68. 68.
    Jendrossek V, Grassme H, Mueller 1, Lang F, Gulbins E (2001) Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infect Immun 69: 2675–2683PubMedCrossRefGoogle Scholar
  69. 69.
    Donnenberg MS (2000) Pathogenic strategies of enteric bacteria. Nature 406: 768–774PubMedCrossRefGoogle Scholar
  70. 70.
    Sawa T, Yahr TL, Ohara M, et al (1999) Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5: 392–398PubMedCrossRefGoogle Scholar
  71. 71.
    Kurahashi K, Kajikawa O, Sawa T, et al (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104: 743–750PubMedCrossRefGoogle Scholar
  72. 72.
    Comolli JC, Waite LL, Mostov KE, Engel JN (1999) Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect Immun 67: 3207–3214PubMedGoogle Scholar
  73. 73.
    Halaas O, Vik R, Ashkenazi A, Espevik T (2000) Lipopolysaccharide induces expression of APO2 ligand/TRAIL in human monocytes and macrophages. Scand J Immunol 51: 244–250PubMedCrossRefGoogle Scholar
  74. 74.
    Buommino E, Morelli F, Metafora S, et al (1999) Porin from Pseudomonas aeruginosa induces apoptosis in an epithelial cell line derived from rat seminal vesicles. Infect Immun 67: 4794–4800PubMedGoogle Scholar
  75. 75.
    Müller A, Günther D, Brinkmann V, Hurwitz R, Meyer TF, Rudel T (2000) Targeting of the pro-apoptotic VDAC-like porin ( PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. EMBO J 19: 5332–5343Google Scholar
  76. 76.
    Sylte MJ, Corbeil LB, Inzana TJ, Czuprynski CJ (2001) Haemophilus somnus induces apoptosis in bovine endothelial cells in vitro. Infect Immun 69: 1650–1660PubMedCrossRefGoogle Scholar
  77. 77.
    Clifton DR, Goss RA, Sahni SK, et al (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc Natl Acad Sci USA 95: 4646–4651PubMedCrossRefGoogle Scholar
  78. 78.
    Kee SH, Cho KA, Kim MK, Lim BU, Chang WH, Kang JS (1999) Disassembly of focal adhesions during apoptosis of endothelial cell line ECV304 infected with Orientia tsutsugamushi. Microb Pathog 27: 265–271PubMedCrossRefGoogle Scholar
  79. 79.
    Kim MK, Kee SH, Cho KA, et al (1999) Apoptosis of endothelial cell line ECV304 persistently infected with Orientia tsutsugamushi. Microbiol Immunol 43: 751–757PubMedGoogle Scholar
  80. 80.
    Menzies BE, Kourteva I (1998) Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66: 5994–5998PubMedGoogle Scholar
  81. 81.
    Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, et al (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186: 1831–1841PubMedCrossRefGoogle Scholar
  82. 82.
    Mallampalli RK, Peterson EJ, Carter AB, Salome RG, Mathur SN, Koretzky GA (1999) TNFalpha increases ceramide without inducing apoptosis in alveolar type II epithelial cells. Am J Physiol 276: L481 - L490PubMedGoogle Scholar
  83. 83.
    Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163: 1376–1383PubMedCrossRefGoogle Scholar
  84. 84.
    Viget N, Guery B, Ader F, et al (2000) Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury. Am J Physiol 279: L1199 - L1209Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • B. Guery
  • J. F. Pittet
  • P. Marchetti

There are no affiliations available

Personalised recommendations