Monitoring Intensive Care Patients

  • M. Poeze
  • G. Ramsay


Hemodynamic monitoring is one of the important reasons for patients to be admitted to the intensive care unit (ICU). The first patients were monitored and treated on an ICU during the polio epidemic [1]. Since then major advances have been made in monitoring the critically ill patient, especially after the introduction of intravascular pressure- and flow-recording catheters in the 1970s [1]. Nowadays, intensivists frequently use invasive hemodynamic monitoring, including intra-arterial, pulmonary artery, and central venous catheters to guide therapeutic interventions. Recent studies have directed the intensivist to the use of less-invasive modalities, because of the complications, such as thrombosis and catheter-related sepsis, which are related to the use of invasive techniques [2–5].


Pulmonary Capillary Wedge Pressure Indocyanine Green Intestinal Permeability Mean Transit Time Splanchnic Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vincent JL, Thijs L, Cerny V (1997) Critical care in Europe. Crit Care Med 13: 245–254Google Scholar
  2. 2.
    Rosenwasse RH, Jallo JL, Gretch CC, et al. (1995) Complications of Swan-Ganz catheterization for hemodynamic monitoring in patients with subarachnoid hemorrhage. Neurosurgery 37: 872–875CrossRefGoogle Scholar
  3. 3.
    Putterman CE (1989) The Swan-Ganz catheter: A decade of hemodynamic monitoring. J Crit Care 4: 127CrossRefGoogle Scholar
  4. 4.
    Shah KB, Rao TLK, Laughlin S, et al (1984) A review of pulmonary artery catheterisation in 6,245 patients. Anaesthesiology 61: 271–275CrossRefGoogle Scholar
  5. 5.
    Connors AF, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276: 889–897PubMedCrossRefGoogle Scholar
  6. 6.
    Boyd O, Hayes M (1999) The oxygen trail: the goal. Br Med Bull 55: 125–139PubMedCrossRefGoogle Scholar
  7. 7.
    Shoemaker WC, Appel PL, Kram HB (1990) Measurement of tissue perfusion by oxygen transport patterns in experimental shock and in high-risk surgical patients. Intensive Care Med 16: S135–S144PubMedCrossRefGoogle Scholar
  8. 8.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supra-normal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186PubMedCrossRefGoogle Scholar
  9. 9.
    Ince C, van der Sluijs JP, Sinaasappel M, Avontuur JA, Coremans JM, Bruining HA (1994) Intestinal ischemia during hypoxia and experimental sepsis as observed by NADH videofluorimetry and quenching of Pd-porphine phosphorescence. Adv Exp Med Biol 361: 105–110PubMedCrossRefGoogle Scholar
  10. 10.
    Mihaljevic T, von Segesser LK, Tonz M, Leskosek B, Jenni R, Turina M (1997) Continuous thermodilution measurement of cardiac output: in-vitro and in-vivo evaluation. J Thorac Cardiovasc Surg 42: 32–35Google Scholar
  11. 11.
    Greim CA, Roewer N, Thiel H, Laux G, Schulte am Esch J (1997) Continuous cardiac output monitoring during adult liver transplantation: thermal filament technique versus bolus thermodilution. Anesth Analg 85: 483–488PubMedGoogle Scholar
  12. 12.
    Schultz RJ, Whitfield GF, LaMura JJ, Raciti A, Krishnamurthy S (1985) The role of physiologic monitoring in patients with fractures of the hip. J Trauma 25: 309–316PubMedCrossRefGoogle Scholar
  13. 13.
    Kisch H, Leucht S, Lichtwarck-Aschoff M, Pfeiffer UJ (1995) Accuracy and reproducibility of the measurement of actively circulating blood volume with an integrated fiberoptic monitoring system. Crit Care Med 23: 885–893PubMedCrossRefGoogle Scholar
  14. 14.
    Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11: 180–188PubMedCrossRefGoogle Scholar
  15. 15.
    Haller M, Zollner C, Briegel J, Forst H (1996) Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 24: 716–717CrossRefGoogle Scholar
  16. 16.
    Ishihara H, lakawa T, Hasegawa T, Muraoka M, Tsubo T, Matsuki A (1999) Does indocyanine green accurately measure plasma volume independently of its disappearance rate from plasma in critically ill patients? Intensive Care Med 25: 1212–1214CrossRefGoogle Scholar
  17. 17.
    Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am J Respir Crit Care Med 145: 990–998CrossRefGoogle Scholar
  18. 18.
    Davies JN, Allen DR, Chant ADB (1991) Non-invasive Doppler-derived cardiac output: a validation study comparing this technique with thermodilution and Fick methods. Eur J Vasc Surg 5: 497–500PubMedCrossRefGoogle Scholar
  19. 19.
    Gardin JM, Dabestani A, Matin K, Allfie A, Russell D, Henry WL (1984) Reproducibility of Doppler aortic blood flow measurments studies on intraobserver, interobserver and day-to-day variability in normal subjects. Am J Cardiol 54: 1092–1098PubMedCrossRefGoogle Scholar
  20. 20.
    Ihlen H, Endresen K, Golf S, Nitter-Hauge S (1987) Cardiac stroke volume during exercise measured by Doppler echocardiography: comparison with the thermodilution technique and evaluation of reproducibility. Br Heart J 58: 455–459PubMedCrossRefGoogle Scholar
  21. 21.
    Krishnamurthy B, McMurray TJ, McClean E (1997) The peri-operative use of the oesophageal Doppler monitor in patients undergoing coronary artery revascularisation. A comparison with the continuous cardiac output monitor. Anaesthesia 52: 624–629Google Scholar
  22. 22.
    Lefrant J-Y, Bruelle P, Aya AGM, et al (1998) Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med 24: 347–352PubMedCrossRefGoogle Scholar
  23. 23.
    Singer M, Bennett D (1989) Optimisation of positive and expiratory pressure for maximal delivery of oxygen to tissues using oesophageal Doppler ultrasonography. Br Med J 298: 1350–1353CrossRefGoogle Scholar
  24. 24.
    Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130: 423–429PubMedCrossRefGoogle Scholar
  25. 25.
    Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. Br Med J 315: 909–912CrossRefGoogle Scholar
  26. 26.
    Poeze M, Ramsay G, Greve JWM, Singer M (1999) Prediction of postoperative cardiac-surgical morbidity and organ failure within 4 hours of ICU admission using esophageal Doppler ultrasonography. Crit Care Med 27: 1288–1294PubMedCrossRefGoogle Scholar
  27. 27.
    Clancy TV, Norman K, Reynolds R, Covington D, Maxwell JG (1991) Cardiac output measurement in critical care patients: Thoracic Electrical Bioimpedance versus thermodilution. J Trauma 31: 1116–1120Google Scholar
  28. 28.
    Uusaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic blood flow by the Fick principle in man and problems in the use of indocyanine green. Cardiovasc Res 30: 106–112PubMedGoogle Scholar
  29. 29.
    Takala J (1994) Sepsis and human splanchnic metabolism. In: Kinney JM, Tucker HN (eds) Organ Metabolism and Nutrition: Ideas for Future Critical Care. Raven Press Ltd., New York, pp 369–379Google Scholar
  30. 30.
    Takala J (1996) Determinants of splanchnic blood flow. Br J Anaesth 77: 50–58PubMedCrossRefGoogle Scholar
  31. 31.
    Poeze M, Greve JWM, Ramsay G (1999) Is splanchnic perfusion a critical problem in sepsis? In: Baue AE, Berlot G, Gullo A, Vincent JL (eds) Sepsis and Organ Dysfunction. From Basics to Clinical Approach. Springer, Milano, pp 169–181CrossRefGoogle Scholar
  32. 32.
    Pastores SM, Katz DP, Kvetan V (1996) Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. Am J Gastroenterol 91: 1697–1710PubMedGoogle Scholar
  33. 33.
    Anonymous (1996) Third European Consensus Conference in Intensive Care Medicine. Tissue hypoxia. How to detect, how to correct, how to prevent? Am J Respir Crit Care Med 154: 1573–1578CrossRefGoogle Scholar
  34. 34.
    Brinkert W, Bakker J (1998) Is it time to abandon the pHi concept? Int J Intensive Care 16–21Google Scholar
  35. 35.
    Heinonen P0, Jousela IT, Blomqvist KA, Olkkola KT, Takkunen OS (1997) Validation of air tonometric measurement of gastric regional concentrations of CO2 in critically ill septic patients. Intensive Care Med 23: 524–529PubMedCrossRefGoogle Scholar
  36. 36.
    Creteur J, De Backer D, Vincent JL (1997) Monitoring gastric mucosal carbon dioxide pressure using gas tonometry: in vitro and in vivo validation studies. Intensive Care Med 87: 504–510Google Scholar
  37. 37.
    Graf J, Konigs B, Mottaghy K, Janssens U (2000) In vitro validation of gastric air tonometry using perfluorocarbon FC 43 and 0.9% sodium chloride. Br J Anaesth 84: 497–499PubMedCrossRefGoogle Scholar
  38. 38.
    Barry B, Mallick A, Hartley G, Bodenham A, Vucevic M (1998) Comparison of air tonometry with gastric tonometry using saline and other equilibrating fluids: an in vivo and in vitro study. Intensive Care Med 24: 777–784PubMedCrossRefGoogle Scholar
  39. 39.
    Vaisanen O, Ruokonen E, Parviainen I, Bocek P, Takala J (2000) Ranitidine or dobutamine alone or combined has no effect on gastric intramucosal-arterial PCO2 difference after cardiac surgery. Intensive Care Med 26: 45–51PubMedCrossRefGoogle Scholar
  40. 40.
    Brinkmann A, Glasbrenner B, Vlatten A, et al (2001) Does gastric juice pH influence tono-metric PCO2 measured by automated air tonometry? Am J Respir Crit Care Med 163: 1150–1152Google Scholar
  41. 41.
    Roumen RMH, Vreugde JP, Goris RJA (1994) Gastric tonometry in multiple trauma patients. J Trauma 36: 313–316PubMedCrossRefGoogle Scholar
  42. 42.
    Schiedler MG, Cutler NS, Fiddian-Green RG (1987) Sigmoid intramural pH for prediction of ischemic colitis during aortic surgery: a comparison with risk factors and inferior mesenteric artery stumo pressures. Arch Surg 122: 881–886PubMedCrossRefGoogle Scholar
  43. 43.
    Fiddian-Green RG, McGough E, Pittenger G, Rothman E (1983) Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology 85: 613–620PubMedGoogle Scholar
  44. 44.
    Mythen M, Webb AR (1994) Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 20: 99–104PubMedCrossRefGoogle Scholar
  45. 45.
    Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill. Lancet 339: 195–199PubMedCrossRefGoogle Scholar
  46. 46.
    Marik PE (1993) Gastric intamucosal pH. A better predictor of multiorgan dysfunction and death than oxygen-derived variables in patients with sepsis. Chest 104: 225–229PubMedCrossRefGoogle Scholar
  47. 47.
    Bonham MJ, Abu-Zidan FM, Simovic MO, Windsor JA (1997) Gastric intramucosal pH predicts death in severe acute pancreatitis. Br J Surg 84: 1670–1674PubMedCrossRefGoogle Scholar
  48. 48.
    Chang MC, Cheatham ML, Nelson LD, Rutherford EJ, Morris-JAJ (1994) Gastric tonometry supplements information provided by systemic indicators of oxygen transport. J Trauma 37: 488–494Google Scholar
  49. 49.
    Poeze M, Takala J, Greve JWM, Ramsay G (2000) Pre-operative tonometry is predictive for mortality and morbidity in high-risk surgical patients. Intensive Care Med 26: 1272–1281PubMedCrossRefGoogle Scholar
  50. 50.
    Ivatury RR, Simon RJ, Islam SI, Fueg A, Rohman M, Stahl WM (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183: 145–154PubMedGoogle Scholar
  51. 51.
    Barquist E, Kirton O, Windsor J, et al (1998) The impact of antioxidant and splanchnic-directed therapy on persistent uncorrected gastric mucosal pH in the critically injured trauma patient. J Trauma 44: 355–360PubMedCrossRefGoogle Scholar
  52. 52.
    Pargger H, Hampl KF, Christen P, Staender S, Scheidegger D (1998) Gastric intramucosal pH-guided therapy in patients after elective repair of infrarenal abdominal aneurysms: is it beneficial? Intensive Care Med 24: 769–776PubMedCrossRefGoogle Scholar
  53. 53.
    Spies CD, Reinhart K, Witt I, et al (1994) Influence of N-acetylcysteine on indirect indicators of tissue oxygenation in septic shock patients: results from a prospective, randomized, double-blind study. Crit Care Med 22: 1738–1746PubMedGoogle Scholar
  54. 54.
    Gomersall CD, Joynt GM, Ho KM, Young RJ, Buckley TA, Oh TE (1997) Gastric tonometry and prediction of outcome in the critically ill. Arterial to intramucosal pH gradient and carbon dioxide gradient. Anaesthesia 52: 619–623Google Scholar
  55. 55.
    Bjarnason I, MacPherson A, Hollander D (1996) Intestinal permeability: an overview. Gastroenterology 110: 967–968CrossRefGoogle Scholar
  56. 56.
    Brinkman A, Calzia E, Träger K, Radermacher P (1998) Monitoring the hepato-splanchnic regional in the critically ill patient. Measurement techniques and clinical relevance. Intensive Care Med 24: 542–556Google Scholar
  57. 57.
    Sinclair DG, Houldsworth PE, Keogh B, Pepper J, Evans TW (1997) Gastrointestinal permeability following cardiopulmonary bypass: a randomised study comparing the effects of dopamine and dopexamine. Intensive Care Med 23: 310–316Google Scholar
  58. 58.
    Hadfield RJ, Sinclair DG, Houldsworth PE, Evans TW (1995) Effects of enteral and parenteral nutrition on gut mucosal permeability in the critically ill. Am J Respir Crit Care Med 152: 1545–1548PubMedCrossRefGoogle Scholar
  59. 59.
    Hallemeesch MM, Lamers WH, Soeters PB, Deutz NEP (2000) Increased lactulose/rhamnose ratio during fluid load is caused by increased urinary lactulose excretion. Am J Physiol 278: G83–G88Google Scholar
  60. 60.
    Oellerich M, Ringe B, Gubernatis G, et al (1989) Lignocaine metabolite formation as a measure of pre-transplant liver function. Lancet 25: 640–642CrossRefGoogle Scholar
  61. 61.
    Schinella M, Guglielmi A, Veraldi GF, Boni M, Frameglia M, Caputo M (1994) Evaluation of the liver function of cirrhotic patients based on the formation of monoethylglycine xylidide ( MEGX) from lidocaine. Eur J Clin Chem Clin Biochem 31: 553–557Google Scholar
  62. 62.
    Oda Y, Kariya N, Nakamoto T, Nishi S, Asada A, Fujimori M (1995) The monoethylglycinexylidide test is more useful for evaluating liver function than indocyanine green test: case of a patient with remarkably decreased indocyanine green half-life. Ther Drug Monit 17: 207–210PubMedCrossRefGoogle Scholar
  63. 63.
    Maynard ND, Bihari DJ, Dalton RN, Beale R, Smithies MN, Mason RC (1997) Liver function and splanchnic ischemia in critically ill patients. Chest 111: 180–187PubMedCrossRefGoogle Scholar
  64. 64.
    Igonin AA, Armstrong VW, Shipkova M, Kukes VG, Oellerich M (2000) The monoethylglycinexylidide ( MEGX) test as a marker of hepatic dysfunction in septic patients with pneumonia. Clin Chem Lab Med 38: 1125–1128Google Scholar
  65. 65.
    Sakka SG, Reinhart K, Meier-Hellmann A (2000) Comparison of invasive and noninvasive measurements of indocyanine green plasma disappearance rate in critically ill patients with mechanical ventilation and stable hemodynamics. Intensive Care Med 26: 1553–1556PubMedCrossRefGoogle Scholar
  66. 66.
    Kholoussy AM, Pollack D, Matsumoto T (1984) Prognostic significance of indocyanine green clearance in critically ill surgical patients. Crit Care Med 12: 115–116PubMedCrossRefGoogle Scholar
  67. 67.
    Pollack DS, Sufian S, Matsumoto T (1979) Indocyanine green clearance in critically ill patients. Surg Gynecol Obstet 149: 853–854Google Scholar
  68. 68.
    Gottlieb ME, Stratton HH, Newell JC, Shah DM (1984) Indocyanine green. Its use as an early indicator of hepatic dysfunction following injury in man. Arch Surg 119: 264–268Google Scholar
  69. 69.
    Krenn CG, Krafft P, Schaefer B, et al (2000) Effects of positive end-expiratory pressure on hemodynamics and indocyanine green kinetics in patients after orthotopic liver transplantation. Crit Care Med 28: 1760–1765PubMedCrossRefGoogle Scholar
  70. 70.
    Landow L (1993) Splanchnic lactate production in cardiac surgery patients. Crit Care Med 21: S84–S91PubMedCrossRefGoogle Scholar
  71. 71.
    Takala J, Uusaro A, Parviainen I, Ruokonen E (1996) Lactate metabolism and regional lactate exchange after cardiac surgery. New Horiz 4: 483–491PubMedGoogle Scholar
  72. 72.
    Tenhunen JJ, Kosunen H, Alhava E, Tuomisto L, Takala J (1999) Intestinal luminal micro-dialysis: a new approach to assess gut mucosal ischemia. Anesthesiology 91: 1807–1815PubMedCrossRefGoogle Scholar
  73. 73.
    Oh MS, Phelps KR, Traube M, Barbosa-Saldivar JL, Boxhill C, Carroll HJ (1979) D-lactic acidosis in a man with the short-bowel syndrome. N Engl J Med 301: 249–252PubMedCrossRefGoogle Scholar
  74. 74.
    Hove H, Mortensen PB (1995) Colonic lactate metabolism and D-lactic acidosis. Dig Dis Sci 40: 320–330PubMedCrossRefGoogle Scholar
  75. 75.
    Murray MJ, Barbose JJ, Cobb CF (1993) Serum D(-)-lactate levels as a predictor of acute intestinal ischemia in a rat model. J Surg Res 54: 507–509PubMedCrossRefGoogle Scholar
  76. 76.
    Murray MJ, Gonze MD, Nowak LR, Cobb CF (1994) Serum D(-)-lactate levels as an aid to diagnosing acute intestinal ischemia. Am J Surg 167: 575–578PubMedCrossRefGoogle Scholar
  77. 77.
    Poeze M, Froon AHM, Greve JWM, Ramsay G (1998) D-lactate as an early marker of intestinal ischaemia after ruptured abdominal aneurysm repair. Br J Surg 85: 1221–1224PubMedCrossRefGoogle Scholar
  78. 78.
    Poeze M, Solberg B, Greve JWM, Ramsay G (2000) Gastric pHi and PrCO2 are related to D-lactate and not to L-lactate levels. Intensive Care Med 26: S343Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • M. Poeze
  • G. Ramsay

There are no affiliations available

Personalised recommendations