Advertisement

Volumetric Capnography in the Non-intubated Critically Ill Patient

  • F. Verschuren
  • F. Thys
  • G. Liistro

Abstract

Direct application of physiopathology at the bedside represents an enthusiastic challenge for the clinician. CO2 kinetics has been the focus of attention of several laboratories in the past, but the clinical implications did not always follow the enthusiasm of the physiologists, principally because of technical limitations and artefacts. With the recent development of analytic devices, acquisition systems and microcomputers, it is now possible to obtain quick and reliable information that in the past required patiently recorded data. Moreover, if these new methods are characterized by their non-invasiveness, and if they can help the diagnostic and therapeutic process while limiting the recourse to invasive or expensive procedures, then it is worth reassessing them in the clinical setting.

Keywords

Pulmonary Embolism Chronic Obstructive Pulmonary Disease Patient Acute Pulmonary Embolism Massive Pulmonary Embolism Lung Scintigraphy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fletcher R, Jonson B, Cumming G, Brew J (1981) The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 53: 77–78PubMedCrossRefGoogle Scholar
  2. 2.
    Fletcher R (1985) Deadspace, invasive and non-invasive. Br J Anaesth 57: 245–249PubMedCrossRefGoogle Scholar
  3. 3.
    West JB (1995) Respiratory Physiology: the Essentials, 4th ed. Lippincott, Williams and Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Eriksson L, Wollmer P, Olsson CG, et al (1989) Diagnosis of pulmonary embolism based upon alveolar dead space analysis. Chest 96: 357–362PubMedCrossRefGoogle Scholar
  5. 5.
    Douketis JD, Kearon C, Bates S, Duku EK, Ginsberg JS (1998) Risk of fatal pulmonary embolism in patients with treated venous thromboembolism. JAMA 279: 458–462PubMedCrossRefGoogle Scholar
  6. 6.
    Ryu JH, Olson EJ, Pellikka PA (1998) Clinical recognition of pulmonary embolism: problem of unrecognized and asymptomatic cases. Mayo Clin Proc 73: 873–879PubMedCrossRefGoogle Scholar
  7. 7.
    Elliott CG (1992) Pulmonary physiology during pulmonary embolism. Chest 101 (Suppl 4): 163S - 171SPubMedCrossRefGoogle Scholar
  8. 8.
    Delcroix M, Melot C, Vachiery JL, et al (1990) Effects of embolus size on hemodynamics and gas exchange in canine embolic pulmonary hypertension. J Appl Physiol 69: 2254–2261PubMedGoogle Scholar
  9. 9.
    Robin ED, Julian DG, Travis DM, Crump CH (1959) A physiological approach to the diagnosis of acute pulmonary embolism. N Engl J Med 19: 586–591CrossRefGoogle Scholar
  10. 10.
    Nutter DO, Massumi RA (1966) The arterial-alveolar carbon dioxide tension gradient in diagnosis of pulmonary embolus. Dis Chest 50: 380–387PubMedCrossRefGoogle Scholar
  11. 11.
    Vereerstraeten J, Schoutens A, Tombroff M, De Koster (1973) Value of measurement of alveolo-arterial gradient of PCO2 compared to pulmonary scan in diagnosis of thromboembolic pulmonary disease. Thorax 28: 306–312PubMedCrossRefGoogle Scholar
  12. 12.
    Hatle L, Rokseth R (1974) The arterial to end-expiratory carbon dioxide tension gradient in acute pulmonary embolism and other cardiopulmonary diseases. Chest 66: 352–357PubMedCrossRefGoogle Scholar
  13. 13.
    Colp C, Stein M (2001) Re-emergence of an “orphan” test for pulmonary embolism. Chest 120: 115–119CrossRefGoogle Scholar
  14. 14.
    Burki NK (1986) The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis 133: 679–685PubMedGoogle Scholar
  15. 15.
    Olsson K, Jonson B, Olsson CG, Wollmer P (1998) Diagnosis of pulmonary embolism by measurement of alveolar dead space. J Intern Med 244: 199–207PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson JT, Owings JT, Goodnight JE (1999) Bedside noninvasive detection of acute pulmonary embolism in critically ill surgical patients. Arch Surg 134: 869–874PubMedCrossRefGoogle Scholar
  17. 17.
    Kline JA, Meek S, Boudrow D, Warner D, Colucciello S (1997) Use of the alveolar dead space fraction ( Vd/Vt) and plasma D-dimers to exclude acute pulmonary embolism in ambulatory patients. Acad Emerg Med 4: 856–863Google Scholar
  18. 18.
    Kline JA, Arunachlam M (1998) Preliminary study of the capnogram waveform area to screen for pulmonary embolism. Ann Emerg Med 32: 289–296PubMedCrossRefGoogle Scholar
  19. 19.
    Johanning JM, Veverka TJ, Bays RA, Tong GK, Schmiege SK (1999) Evaluation of suspected pulmonary embolism utilizing end-tidal CO2 and D-dimer. Am J Surg 178: 98–102PubMedCrossRefGoogle Scholar
  20. 20.
    Patel MM, Rayburn DB, Browning JA, Kline JA (1999) Neural network analysis of the volumetric capnogram to detect pulmonary embolism. Chest 116: 1325–1332PubMedCrossRefGoogle Scholar
  21. 21.
    Kline JA, Kubin AK, Patel MM, Easton EJ, Seupal RA (2000) Alveolar dead space as a predictor of severity of pulmonary embolism. Acad Emerg Med 7: 611–617PubMedCrossRefGoogle Scholar
  22. 22.
    Hamel E, Pacouret G, Vincentelli D, et al (2001) Thrombolysis or heparin therapy in massive pulmonary embolism with right ventricular dilation: results from a 128-patient mono-center registry. Chest 120: 6–8CrossRefGoogle Scholar
  23. 23.
    Kline JA, Israel EG, Michelson EA, O’Neil BJ, Plewa MC, Portelli DC (2001) Diagnostic accuracy of a bedside D-dimer assay and alveolar dead-space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA 285: 761–768PubMedCrossRefGoogle Scholar
  24. 24.
    Rodger MA, Jones G, Rasuli P, et al (2001) Steady-state end-tidal alveolar dead space fraction and D-dimer: bedside tests to exclude pulmonary embolism. Chest 120: 115–119PubMedCrossRefGoogle Scholar
  25. 25.
    Perrier A, Desmarais S, Miron MJ, et al (1999) Non-invasive diagnosis of venous thromboembolism in outpatients. Lancet 353: 190–195PubMedCrossRefGoogle Scholar
  26. 26.
    Wells PS, Anderson DR, Rodger M, et al (2001) Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann Intern Med 135: 98–107PubMedCrossRefGoogle Scholar
  27. 27.
    The PIOPED investigators (1990) Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA 263: 2753–2759CrossRefGoogle Scholar
  28. 28.
    Thys F, Elamly A, Marion E, et al (2001) PaCO(2)/ETCO(2) gradient: early indicator of thrombolysis efficacy in a massive pulmonary embolism. Resuscitation 49: 105–108PubMedCrossRefGoogle Scholar
  29. 29.
    Wiegand UK, Kurowski V, Giannitsis E, Katus HA, Djonlagic H (2000) Effectiveness of end-tidal carbon dioxide tension for monitoring thrombolytic therapy in acute pulmonary embolism. Crit Care Med 28: 3588–3592PubMedCrossRefGoogle Scholar
  30. 30.
    Chopin C, Fesard P, Mangalaboyi J, et al (1990) Use of capnography in diagnosis of pulmonary embolism during acute respiratory failure of chronic obstructive pulmonary disease. Crit Care Med 18: 353–357PubMedCrossRefGoogle Scholar
  31. 31.
    Jaffe MB (1999) Partial CO2 rebreathing cardiac output-operating principles of the NICO system. J Clin Monit 15: 387–401CrossRefGoogle Scholar
  32. 32.
    Arnold JH, Stenz RI, Thompson JE, Arnold LW (1996) Noninvasive determination of cardiac output using single breath CO2 analysis. Crit Care Med 24: 1701–1705PubMedCrossRefGoogle Scholar
  33. 33.
    Hubble CL, Gentile MA, Tripp DS, Craig DM, Meliones JN, Cheifetz IM (2000) Deadspace to tidal volume ratio predicts successful extubation in infants and children. Crit Care Med 28: 2034–2040PubMedCrossRefGoogle Scholar
  34. 34.
    Breen PH, Mazumdar B, Skinner SC (1996) Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg 82: 368–373PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • F. Verschuren
  • F. Thys
  • G. Liistro

There are no affiliations available

Personalised recommendations