Detection of Fluid Responsiveness

  • F. Michard
  • J. L. Teboul


Volume expansion is frequently used in critically ill patients to improve hemodynamics. However, in studies designed to examine fluid responsiveness, only around 50% of critically ill patients have been shown to respond to volume expansion by a significant increase in stroke volume or cardiac output [1]. This finding emphasizes the need for predictive factors of fluid responsiveness to avoid ineffective or even deleterious effects of volume expansion (increase of extravascular lung water potentially resulting in worsening in gas exchange and longer ventilation time) in non-responder patients, in whom inotropic and/or vasopressor support should preferentially be used to improve hemodynamics. Clinical examination has been shown to be of minimal value in detecting inadequate cardiac preload and fluid responsiveness [2–5]. Therefore, many parameters derived from pulmonary artery catheterization, arterial pressure wave form analysis, echocardiography-Doppler and the PiCCO system have been proposed to help the caregiver in the decision making process concerning volume expansion.


Stroke Volume Fluid Responsiveness Stroke Volume Variation Pulmonary Artery Occlusion Pressure Transpulmonary Thermodilution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–289PubMedCrossRefGoogle Scholar
  2. 2.
    Connoars AF, McCaffee DR, Gray RA (1983) Evaluation of right heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med 308: 263–267CrossRefGoogle Scholar
  3. 3.
    Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 12: 107–112PubMedCrossRefGoogle Scholar
  4. 4.
    McGee S, Abernethy WB, Simel DL (1999) Is this patient hypovolemic? JAMA 281: 1022–1029CrossRefGoogle Scholar
  5. 5.
    Michard F, Ruscio L, Teboul JL (2001) Clinical prediction of fluid responsiveness in acute circulatory failure related to sepsis. Intensive Care Med 27: 1238PubMedCrossRefGoogle Scholar
  6. 6.
    Magder S (1998) More respect for the CVP. Intensive Care Med 24: 651–653PubMedCrossRefGoogle Scholar
  7. 7.
    Packman MI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11: 165–169PubMedCrossRefGoogle Scholar
  8. 8.
    Schneider AJ, Teule GJJ, Groeneveld ABJ, et al (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116: 103–112PubMedCrossRefGoogle Scholar
  9. 9.
    Wagner JG, Leatherman JW (1998) Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113: 1048–1054PubMedCrossRefGoogle Scholar
  10. 10.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355PubMedGoogle Scholar
  11. 11.
    Calvin JE, Driedger AA, Sibbald WJ (1981) The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery 90: 61–76PubMedGoogle Scholar
  12. 12.
    Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenge. Chest 98: 1450–1454PubMedCrossRefGoogle Scholar
  13. 13.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–138PubMedCrossRefGoogle Scholar
  14. 14.
    Diebel L, Wilson RF, Heins J, et al (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37: 950–955PubMedCrossRefGoogle Scholar
  15. 15.
    Tavernier B, Makhotine O, Lebuffe G, et al (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–1321PubMedCrossRefGoogle Scholar
  16. 16.
    Diebel LN, Wilson RF, Tagett MG, et al (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127: 817–822PubMedCrossRefGoogle Scholar
  17. 17.
    Baek S-E, Makabali GG, Bryan-Brown CW, et al (1975) Plasma expansion in surgical patients with high central venous pressure (CVP); the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery 78: 304–315PubMedGoogle Scholar
  18. 18.
    Magder S, Georgiadis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7: 76–85CrossRefGoogle Scholar
  19. 19.
    Magder S, Lagonidis D (1999) Effectiveness of albumin versus normal saline as a test of volume responsiveness in post-cardiac surgery patients. J Crit Care 14: 164–171PubMedCrossRefGoogle Scholar
  20. 20.
    Chemla D, Hébert JL, Coirault C, et al (1998) Total arterial compliance estimated by the stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274:HSO0–HSO5Google Scholar
  21. 21.
    Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68: 266–274PubMedCrossRefGoogle Scholar
  22. 22.
    Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159: 935–939PubMedCrossRefGoogle Scholar
  23. 23.
    Michard F, Teboul JL (2000) Respiratory changes in arterial pressure in mechanically ventilated patients. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 696–704Google Scholar
  24. 24.
    Robotham JL, Cherry D, Mitzner W, et al (1983) A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation. Crit Care Med 11: 783–793PubMedCrossRefGoogle Scholar
  25. 25.
    Denault YD, Gasior TA, Gorcsan III J, et al (1999) Determinants of aortic pressure variation during positive-pressure ventilation in man. Chest 116: 176–186PubMedCrossRefGoogle Scholar
  26. 26.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502PubMedCrossRefGoogle Scholar
  27. 27.
    Thys DM, Hillel Z, Goldman ME, et al (1987) A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67: 630–634PubMedCrossRefGoogle Scholar
  28. 28.
    Feissel M, Michard F, Mangin I, et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119: 867–873PubMedCrossRefGoogle Scholar
  29. 29.
    Vieillard-Baron A, Augarde R, Prin S, et al (2001) Influence of superior vena caval zone condition on cyclic change in right ventricular outflow during respiratory support. Anesthesiology 95: 1083–1088PubMedCrossRefGoogle Scholar
  30. 30.
    Wesseling KH, deWit B, Weber JAP, et al (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Physiol 5: 16–52Google Scholar
  31. 31.
    Goedje O, Hoeke K, Lichtwarck-Aschoff M, et al (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27: 2407–2412PubMedCrossRefGoogle Scholar
  32. 32.
    Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92: 984–989PubMedCrossRefGoogle Scholar
  33. 33.
    Reuter DA, Kirchner A, Felbinger TW, et al (2002) Optimising fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anaesth (in press)Google Scholar
  34. 34.
    Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med (in press)Google Scholar
  35. 35.
    Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25: 843–846PubMedCrossRefGoogle Scholar
  36. 36.
    Tibby SM, Hatherill M, Marsh MJ, et al (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med 23: 987–991PubMedCrossRefGoogle Scholar
  37. 37.
    Sakka SG, Ruhl CC, Pfeiffer UJ, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187PubMedCrossRefGoogle Scholar
  38. 38.
    Gödje O, Peyerl M, Seebauer T, et al (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volume as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13: 533–540PubMedCrossRefGoogle Scholar
  39. 39.
    Goedje O, Seebauer T, Peyerl M, et al (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–781PubMedCrossRefGoogle Scholar
  40. 40.
    Wisner-Euteneir AJ, Lichtwarck-Aschoff M, Zimmermann G, et al (1994) Evaluation of the cardiac function index as a new bedside indicator of cardiac performance. Intensive Care Med 20: 521 (Abst)Google Scholar
  41. 41.
    Michard F and Teboul JL (2001) Usefulness of transpulmonary thermodilution to predict fluid responsiveness in humans with septic shock. Intensive Care Med 27: S148 (Abst)Google Scholar
  42. 42.
    Boldt J, Lenz M, Kumle B, Papsdorf M (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24: 147–151PubMedCrossRefGoogle Scholar
  43. 43.
    Société de réanimation de langue française (1997) Quels sont les critères diagnostiques d’une hypovolémie nécessitant un remplissage vasculaire? Réanim Urg 6: 347–360Google Scholar
  44. 44.
    Vincent JL (2001) Hemodynamic support in septic shock. Intensive Care Med 27: S80 - S92PubMedCrossRefGoogle Scholar
  45. 45.
    Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine (1999) Practice parameters for hemodynamic support in adult patients in sepsis. Crit Care Med 27: 639–660CrossRefGoogle Scholar
  46. 46.
    Iberti TJ, Fischer EP, Leibowitz AB, et al (1990) A multicenter study of physician’s knowledge of the pulmonary artery catheter. JAMA 264: 2928–2932PubMedCrossRefGoogle Scholar
  47. 47.
    Teboul JL, Pinsky MR, Mercat A, et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crìt Care Med 28: 3631–3636PubMedCrossRefGoogle Scholar
  48. 48.
    Raper R, Sibbald WI (1986) Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 89: 427–434PubMedCrossRefGoogle Scholar
  49. 49.
    Hoeper MM, Tongers J, Leppert A, et al (2001) Evaluation of right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 120: 502–507PubMedCrossRefGoogle Scholar
  50. 50.
    Urbanowicz JH, Shaaban MJ, Cohen NH, et al (1990) Comparison of transesophageal echo-cardiographic and scintigraphic estimates of left ventricular end-diastolic volume index and ejection fraction in patients following coronary artery bypass grafting. Anesthesiology 72: 607–612PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • F. Michard
  • J. L. Teboul

There are no affiliations available

Personalised recommendations