Skip to main content

Monitoring Left Heart Performance in the Critically Ill

  • Chapter
Intensive Care Medicine
  • 228 Accesses

Abstract

Pre-existing ventricular dysfunction in the critically ill patient significantly determines outcome. The importance of this feature has been demonstrated both in septic and in perioperative non-cardiac surgical patients [1, 2]. When admitted to the ICU, patients with extensive hemodynamic deterioration, either due to distributive shock, cardiogenic shock or posttraumatic hypovolemia, should be examined rapidly to correctly assess the main determinants of cardiovascular function. Table 1 summarizes intrinsic and extrinsic determinants governing ventricular function. Rapid decision making will have a major impact on further therapeutic strategies [3, 4]. In this respect, it is of paramount importance to estimate accurately both changing loading conditions and cardiac function. Traditional measures, such as stroke volume, cardiac output, and ejection fraction have proven their validity in clinical practice, although caution is warranted because of their strong load dependency. The load dependency precludes the use of ejection fraction as a parameter in patients with either disturbed preload or afterload. Left ventricular (LV) ejection fraction does not show any prognostic value with respect to outcome prediction in patients with normal systolic LV function in septic shock [5]. With the advent of more powerful and more specific technology, a different framework for evaluating LV performance must be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vallet B, Chopin C, Curtis S, et al (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective, multicenter study. Crit Care Med 21: 1868–1875

    Article  PubMed  CAS  Google Scholar 

  2. Mangano D, Browner W, Hollenberg M, London M, Tubau J, Tateo I (1990) Association of perioperative myocardial ischemia with cardiac morbidity and mortality in men undergoing noncardiac surgery. N Engl J Med 323: 1781–1788

    Article  PubMed  CAS  Google Scholar 

  3. Bergquist BD, Bellows WH, Leung JM (1996) Transesophageal echocardiography in myocardial revascularisation: II. Influence on intraoperative decision making. Anesth Analg 82: 1139–1145

    PubMed  CAS  Google Scholar 

  4. Poelaert JI, Trouerbach J, De Buyzere M, Everaert J, Colardyn FA (1995) Evaluation of transesophageal echocardiography as a diagnostic and therapeutic aid in a critical care setting. Chest 107: 774–779

    Article  PubMed  CAS  Google Scholar 

  5. Jardin F, Fourme T, Page B, et al (1999) Persistent preload defect in severe sepsis despite fluid loading. A longitudinal echocardiographic study in patients with septic shock. Chest 116: 1354–1359

    Article  PubMed  CAS  Google Scholar 

  6. Braunwald E (1997) Mechanisms of cardiac contraction and relaxation. In: Braunwald E (ed) Heart disease. A Textbook of Cardiovascular Medicine. W.B. Saunders, Philadelphia, pp 360–393

    Google Scholar 

  7. Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor down-regulation in the failing human heart. Circulation 104: 881–886

    Article  PubMed  CAS  Google Scholar 

  8. Mulieri L, Hasenfuss G, Ittleman F, et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85: 1743–1750

    Article  PubMed  CAS  Google Scholar 

  9. Goldstein J, Tweddell J, Barzilai B, Yagi Y, Jaffe A, Cox J (1992) Importance of left ventricular function and systolic ventricular interaction to the right ventricular performance during acute right heart ischemia. J Am Coll Cardiol 19: 704–711

    Article  PubMed  CAS  Google Scholar 

  10. Marcus J, Noordegraaf A, Roeleveld R, et al (2001) Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension. Chest 119: 1761–1765

    Article  PubMed  CAS  Google Scholar 

  11. Berger M, Haimowitz A, Van Tosh A, Berdoff R, Goldberg E (1985) Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol 6: 359–365

    Article  PubMed  CAS  Google Scholar 

  12. Bajzer C, Stewart W, Cosgrove D, Azzam S, Arheart K, Klein A (1998) Tricuspid valve surgery and intraoperative echocardiography. J Am Coll Cardiol 32: 1023–1031

    Article  PubMed  CAS  Google Scholar 

  13. Pathi V, Jones B, Davidson K (1996) Mitral valve disruption following blunt trauma: case report and review of the literature. Eur J Cardiothorac Surg 10: 806–808

    Article  PubMed  CAS  Google Scholar 

  14. Holubarsch C, Ruf T, Goldstein D, et al (1996) Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue and sarcomere levels. Circulation 94: 683–689

    Article  PubMed  CAS  Google Scholar 

  15. Mark J (1991) Central venous pressure monitoring: clinical insights beyond the numbers. J Cardiothorac Vasc Anesth 5: 163–173

    Article  PubMed  CAS  Google Scholar 

  16. Magder S (1998) More respect for the CVP. Intensive Care Med 24: 651–653

    Article  PubMed  CAS  Google Scholar 

  17. Soliman D, Maslow A, Bokesch P, et al (1998) Transoesphageal echocardiography during scoliosis repair: comparison with CVP monitoring. Can J Anaesth 45: 925–932

    Article  PubMed  CAS  Google Scholar 

  18. Hansen RM, Viquerat CE, Matthay MA, et al (1986) Poor correlation between pulmonary arterial wedge pressure and left end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64: 764–770

    Article  PubMed  CAS  Google Scholar 

  19. Thys D, Hillel Z, Goldman M, Mindich B, Kaplan J (1987) A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67: 630–634

    Article  PubMed  CAS  Google Scholar 

  20. Jardin F, Valier B, Beauchet A, Dubourg 0, Bourdarias J (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20: 550–554

    Article  PubMed  CAS  Google Scholar 

  21. Tousignant C, Walsh F, Mazer C (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355

    PubMed  CAS  Google Scholar 

  22. Swenson JD, Harkin C, Pace NL, Astle K, Bailey P (1996) Transesophageal echocardiography: An objective tool in determining maximum ventricular response to intravenous fluid therapy. Anesth Ana1g 83: 1149–1153

    CAS  Google Scholar 

  23. Leung JM, Levine EH (1994) Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology 81: 1102–1109

    Article  PubMed  CAS  Google Scholar 

  24. Mirsky I, Corin WJ, Murakami T, Grimm J, Hess OM, Kraeyenbuehl HP (1988) Correction for preload in assessment of myocardial contractility in aortic and mitral valve disease. Circulation 87: 68–80

    Article  Google Scholar 

  25. Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolaemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498502

    Google Scholar 

  26. Coriat P, Vrillon M, Perel A, et al (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Ana1g 78: 46–53

    CAS  Google Scholar 

  27. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–1321

    Article  PubMed  CAS  Google Scholar 

  28. Tournadre JP, Allacouchiche B, Cayrel V, Mathion L, Chassard D (2000) Estimation of cardiac preload changes by systolic pressure variation in pigs undergoing pneumoperitoneum. Acta Anaesthesiol Scand 44: 231–235

    Article  PubMed  CAS  Google Scholar 

  29. Keren G, Sherez J, Megidish R, Levitt B, Laniado S (1985) Pulmonary venous flow pattern–its relationship to cardiac dynamics. Circulation 71: 1105–1112

    Article  PubMed  CAS  Google Scholar 

  30. Appleton C, Hatle L, Popp R (1988) Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol 12: 426–440

    Article  PubMed  CAS  Google Scholar 

  31. Kuecherer H, Muhiudeen I, Kusumoto F, et al (1990) Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 82: 1127–1139

    Article  PubMed  CAS  Google Scholar 

  32. Rossvoll O, Hatle L (1993) Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: relation to left ventricular diastolic pressures. J Am Coll Cardiol 21: 1687–1696

    Article  PubMed  CAS  Google Scholar 

  33. Hoit B, Shao Y, Gabel M, Walsh R (1992) Influence of loading conditions and contractile state on pulmonary venous flow. Validation of Doppler velocimetry. Circulation 86: 651–659

    Google Scholar 

  34. Hofmann T, Keck A, van Ingen G, Simic O, Ostermeyer J, Meinertz T (1995) Simultaneous measurement of pulmonary venous flow by intravascular catheter Doppler velocimetry and transesophageal Doppler echocardiography: relation to left atrial pressure and left atrial and left ventricular function. J Am Coll Cardiol 26: 239–249

    Article  PubMed  CAS  Google Scholar 

  35. Yamamuro A, Yoshida K, Hozumi T, et al (1999) Noninvasive evaluation of pulmonary wedge pressure in patients with acute myocardial infarction by deceleration time of pulmonary venous flow velocity iin diastole. J Am Coll Cardiol 34: 90–94

    Article  PubMed  CAS  Google Scholar 

  36. Appleton C, Galloway J, Gonzalez M, Gaballa M, Basnight M (1993) Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol 22: 1972–1982

    Google Scholar 

  37. Kinnaird T, Thompson C, Munt B (2001) The deceleration time of pulmonary venous diastolic flow is more accurate than the pulmonary artery occlusion pressure predicting left atrial pressure. J Am Coll Cardiol 37: 2025–2030

    Article  PubMed  CAS  Google Scholar 

  38. Hoeft A, Schorn B, Weyland A, et al (1994) Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 81: 76–86

    Article  PubMed  CAS  Google Scholar 

  39. Goedje O, Thiel C, Lamm P, et al (1999) Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68: 1532–1536

    Article  Google Scholar 

  40. Sakka S, Rühl C, Pfeiffer U, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187

    Article  PubMed  CAS  Google Scholar 

  41. Hinder F, Poelaert J, Schmidt C, et al (1998) Assessment of cardiovascular volume status by transoesophageal echocardiography and dye dilution during cardiac surgery. Eur J Anaesth 15: 633–640

    Article  CAS  Google Scholar 

  42. Goedje O, Seebauer T, Peyerl M, Pfeiffer U, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–781

    Article  PubMed  CAS  Google Scholar 

  43. Wesseling K, Jansen J, Settels J, Schreuder J (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74: 2566–2573

    PubMed  CAS  Google Scholar 

  44. Cheatham M, Nelson L, Chang M, Safcsak K (1998) Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure. Crit Care Med 26: 1801–1805

    Article  PubMed  CAS  Google Scholar 

  45. Shivalkar B, Van Loon J, Wieland W, et al (1993) Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation 87: 230–239

    Article  PubMed  CAS  Google Scholar 

  46. Goddard C, Allard M, Hogg J, Walley K (1996) Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 270: H1446 - H1452

    PubMed  CAS  Google Scholar 

  47. Murray D, Freeman G (1996) Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78: 154–160

    Article  PubMed  CAS  Google Scholar 

  48. Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimetntal and theoretical analysis based on pressure-volume relationships. Circulation 76: 1422–1436

    Article  PubMed  CAS  Google Scholar 

  49. Sagawa K (1981) The end-systolic pressure-volume relation of the ventricle: definition, modification, and clinical use. Circulation 63: 1223–1227

    Article  PubMed  CAS  Google Scholar 

  50. Pagel P, Kampine J, Schmeling W, Warltier D (1990) Comparison of end-systolic pressure-length relations and preload recruitable stroke work as indices of myocardial contractility in the conscious and anesthetized, chronically instrumented dog. Anesthesiology 73: 278–290

    Article  PubMed  CAS  Google Scholar 

  51. Kass D, Grayson R, Marino P (1990) Pressure-volume analysis as a method for quantifying simultaneous drug (amrinone) effects on arterial load and contractile state in vivo. J Am Coll Cardiol 16: 726–732

    Article  PubMed  CAS  Google Scholar 

  52. Gorcsan J, Gasior T, Mandarino W, Deneault L, Hattler B, Pinsky M (1994) Assessment of the intermediate effects of cardiopulmonary bypass on left ventricular performance by online pressure-area relations. Circulation 89: 180–190

    Article  PubMed  Google Scholar 

  53. Glower DD, Spratt JA, Snow ND, et al (1985) Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recuitable stroke work. Circulation 71: 994–1009

    Article  PubMed  CAS  Google Scholar 

  54. Broka S, Eucher P, Jamart J, et al (1999) Doppler-derived left ventricular rate of pressure rise determination in presence of severe acute mitral regurgitation in pigs. J Am Soc Echocardiogr 12: 827–833

    Article  PubMed  CAS  Google Scholar 

  55. Rhodes J, Udelson J, Marx G, et al (1993) A new noninvasive method for the estimation of peak dP/dt. Circulation 88: 2693–2699

    Article  PubMed  CAS  Google Scholar 

  56. Greim C, Roewer N, Meissner C, Bause H, Schulte am Esch J (1995) Estimation of acute left ventricular afterload alterations. A transesophageal echocardiographic evaluation. Anaesthesist 44: 108–115

    Google Scholar 

  57. Little W, Cheng C, Mamma M, Igarashi Y, Vinten-Johansen J, Johnston W (1989) Comparison of measures of left ventricular performance derived from pressure-volume loops in conscious dogs. Circulation 80: 1378–1387

    Article  PubMed  CAS  Google Scholar 

  58. Gorcsan J III, Denault A, Gasior TA, et al (1994) Rapid estimation of left ventricular contractility from end-systolic relations by echocardiographic automated border detection and femoral arterial pressure. Anesthesiology 81: 553–562

    Article  PubMed  Google Scholar 

  59. De Hert SG, Rodrigus IE, Haenen LR, De Mulder PA, Gillebert TC (1996) Recovery of systolic and diastolic left ventricular function early after cardiopulmonary bypass. Anesthesiology 85: 1063–1075

    Article  PubMed  Google Scholar 

  60. Declerck C, Hillel Z, Shih H, Kuroda M, Connery C, Thys D (1998) A comparison of left ventricular performance indices measured by transesophageal echocardiography with automated border detection. Anesthesiology 89: 341–349

    Article  PubMed  CAS  Google Scholar 

  61. Kass D, Beyar R, Lankford E, Heard M, Maughan W, Sagawa K (1989) Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relation. Circulation 79: 167–178

    Article  PubMed  CAS  Google Scholar 

  62. Baan J, Van Der Velde E (1988) Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ Res 62: 1247–1258

    Article  PubMed  CAS  Google Scholar 

  63. Poortmans G, Schöpfer G, Roosens C, Poelaert J (2000) Transesophageal echocardiographic evaluation of left ventricular function. J Cardiothorac Vasc Anesth 14: 588–598

    Article  PubMed  CAS  Google Scholar 

  64. Haney M, Johansson G, Häggmark S, Biber B (2001) Heart-lung interactions during positive pressure ventilation: left ventricular pressure-volume momentary response to airway pressure elevation. Acta Anaesthesiol Scand 45: 702–709

    Article  PubMed  CAS  Google Scholar 

  65. Haney M, Johansson G, Häggmark S, Biber B (2001) Analysis of left ventricular systolic function during elevated external cardiac pressure: an examination of measured transmural left ventricular pressure during pressure-volume analysis. Acta Anaesthesiol Scand 45: 868874

    Google Scholar 

  66. Leite-Moreira A, Gillebert T (1994) Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation 90: 2481–2491

    Article  PubMed  CAS  Google Scholar 

  67. Schmidt C, Roosens C, Struys M, et al (1999) Contractility in humans after coronary artery surgery. Echocardiographic assessment with preload-adjusted maximal power. Anesthesiology 91: 58–70

    Article  PubMed  CAS  Google Scholar 

  68. Hayashi K, Shigemi K, Shishido T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of ventricular end-systolic elastance-effective arterial elastance as an index of ventricular mechanoenergetic performance. Anesthesiology 92: 1769–1776

    Article  PubMed  CAS  Google Scholar 

  69. Gillebert TC, Leite-Moreira AF, De Hert SG (1997) Relaxation-systolic pressure relation. A load dependent assessment of left ventricular contractility. Circulation 95: 745–752

    Google Scholar 

  70. Ishizaka S, Asanoi H, Wada 0, Kameyama T, Inoue H (1995) Loading sequence plays an important role in enhanced laod sensitivity of left ventricular relaxation in conscious dogs with tachycardia-induced cardiomyopathy. Circulation 92: 3560–3567

    Article  PubMed  CAS  Google Scholar 

  71. Gillebert T, Leite-Moreira A, De Hert S (1997) The hemodynamic manifestation of normal myocardial relaxation. A framework for experimental and clinical evaluation. Acta Cardiologica 52: 223–246

    Google Scholar 

  72. Leite-Moreira A, Correia-Pinto J, Gillebert T (1999) Load dependence of left ventricular contraction and relaxation. Effects of caffeine. Basic Res Cardiol 94: 284–293

    Google Scholar 

  73. Tan L (1991) Evaluation of cardiac dysfunction, cardiac reserve and inotropic response. Postgrad Med J 67: 510 - S20

    Article  Google Scholar 

  74. Stein P, Sabbah H (1976) Rate of change of ventricular power: An indicator of ventricular performance during ejection. Am Heart J 91: 219–227

    Google Scholar 

  75. Yi KD, Downey HF, Bian X, Fu M, Mallet RT (2000) Dobutamine enhances both contractile function and energy reserves in hypoperfused canine right ventricle. Am J Physiol 279: H2975 - H2985

    CAS  Google Scholar 

  76. Kass DA, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84: 1698–1708

    Article  PubMed  CAS  Google Scholar 

  77. Katz WE, Gasior TA, Quinlan JJ, Gorcsan III J (1993) Transgastric continuous-wave Doppler to determine cardiac output. Am J Cardiol 71: 853–857

    Article  PubMed  CAS  Google Scholar 

  78. Mandarino W, Pinsky M, Gorcsan J (1998) Assessment of left ventricular contractile state by preload-adjusted maximal power using echocardiographic automated border detection. J Am Coll Cardiol 31: 861–868

    Article  PubMed  CAS  Google Scholar 

  79. Segers P, Carlier S, Westerhof B, Poelaert J, Verdonck P (2001) Significance du pouvoir hydraulique du VG: étude d’un modèle mathématique. J Cardiologie 13: 3–11

    Google Scholar 

  80. Pagel PS, Nijhawan N, Warltier DC (1993) Quantitation of volatile anesthetic-induced depression of myocardial contractility using a single beat index derived from maximal ventricular power. J Cardiothor Vasc Anesth 7: 688–695

    Article  CAS  Google Scholar 

  81. Kelly R, Fitchett D (1992) Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol 20: 952–963

    Article  PubMed  CAS  Google Scholar 

  82. Tei C (1995) New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 26: 396–404

    Google Scholar 

  83. Tei C, Nishimura R, JB S, Tajik A (1997) Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterisation measurements. J Am Soc Echocardiogr 10: 169–178

    Article  PubMed  CAS  Google Scholar 

  84. Tei C, Dujardin K, Hodge D, Kyle R, Tajik A, Seward J (1996) Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol 27: 658–664

    Article  Google Scholar 

  85. Weissler A, Harris W, Schoenfeld C (1968) Systolic time intervals in heart failure in man. Circulation 37: 149–159

    Article  PubMed  CAS  Google Scholar 

  86. Kyriakidis M, Antonopoulos A, Georgiakodis F, et al (1994) Systolic time intervals after phenylephrine administration for early stratification of patients after acute myocardial infarction. Am J Cardiol 73: 6–10

    Article  PubMed  CAS  Google Scholar 

  87. Poulsen S, Nielsen J, Andersen H (2000) The influence of heart rate on the Doppler-derived myocardial performance index. J Am Soc Echocardiogr 13: 379–84

    PubMed  CAS  Google Scholar 

  88. Moller J, Poulsen S, Egstrup K (1999) Effect of preload alterations on a new Doppler echo-cardiographic index of combined systolic and diastolic performance. J Am Soc Echocardiogr 12: 1065–1072

    Article  PubMed  CAS  Google Scholar 

  89. Eidem B, O’Leary P, Tei C, Seward J (2000) Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am J Cardiol 86: 654–658

    Article  PubMed  CAS  Google Scholar 

  90. Williams R, Ritter S, Tani L, Pagotto L, Minich L (2000) Quantitative assessment of ventricular function in children with single ventricles using Doppler myocardial performance index. Am J Cardiol 86: 1106–1110

    Article  PubMed  CAS  Google Scholar 

  91. Eidem B, Tei C, O’Leary P, Cetta F, Seward J (1998) Nongeometric quantitative assessment of right and left ventricular function: Myocardial Performance Index in normal children and patients with Ebstein Anomaly. J Soc Echocardiogr 11: 849–856

    Google Scholar 

  92. Schmidt C, Berendes E (2001) Myocardial performance before and after sympathectomy. Anesthesiology 96: 95

    Google Scholar 

  93. Grossman W (1991) Diastolic dysfunction in congestive heart failure. N Engl J Med 325: 1557–1564

    Article  PubMed  CAS  Google Scholar 

  94. Pagel P, Grossman W, Haering J, Warltier D (1993) Left ventricular diastolic function in the normal and diseased heart: persepctives for the anesthesiologist (first of two parts). Anesthesiology 79: 836–854

    Article  PubMed  CAS  Google Scholar 

  95. De Hert S, Vander Linden P, Ten Broecke P, De Mulder P, Rodrigus I, Adriaensen H (2000) Assessment of length-dependent regulation of myocardial function in coronary surgery patients using transmitral flow velocity patterns. Anesthesiology 93: 374–381

    Article  PubMed  Google Scholar 

  96. Sutherland G, Stewart M, Groundstroem K, et al (1994) Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 7: 441–458

    PubMed  CAS  Google Scholar 

  97. Takatsuji H, Mikami T, Urasawa K, et al (1996) A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J Am Coll Cardiol 27: 365–371

    Article  PubMed  CAS  Google Scholar 

  98. Sohn DW, Chai IH, Lee DJ, et al (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventircular diastolic function. J Am Coll Cardiol 30: 474–480

    Article  PubMed  CAS  Google Scholar 

  99. Oki T, Tabata T, Yamada H, et al (1997) Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol 79: 921–928

    Article  PubMed  CAS  Google Scholar 

  100. Oki T, Tabata T, Mishiro Y, et al (1999) Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in heatly subjects. J Am Soc Echocardiogr 12: 308–313

    Article  PubMed  CAS  Google Scholar 

  101. Heimdal A, Stoylen A, Torp H (1998) Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr 11: 1013–1019

    Article  PubMed  CAS  Google Scholar 

  102. Sohn DW, Kim YJ, Chun HG, Park YB, Choi YC (1999) Evaluation of left ventricular diastolic function when mitral E and A waves are completely fused: role of assessing mitral annulus velocity. J Am Soc Echocardiogr 12: 203–208

    CAS  Google Scholar 

  103. Sohn DW, Kim YL, Lee MM, Park YB, Choi YS, Lee YW (2000) Differentiation between reversible and irreversible restrictive left ventricular filling pattern with the use of mitral annulus velocity. J Am Soc Echocardiogr 13: 891–895

    Article  PubMed  CAS  Google Scholar 

  104. Sohn DW, Choi YJ, Oh BH, Lee MM, Lee YW (1999) Estimation of left ventricular end-diastolic pressure with the difference in pulmonary venous and mitral A durations is limited when mitral E and A waves are overlapped. J Am Soc Echocardiogr 12: 106–112

    Article  CAS  Google Scholar 

  105. Bach D (1996) Quantitative Doppler tissue imaging as a correlated of left ventricular contractility. Int J Cardiac Imag 12: 191–195

    Article  CAS  Google Scholar 

  106. Nagueh S, Middleton K, Kopelen H, Zoghibi W, Quinones M (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30: 1527–1533

    Article  PubMed  CAS  Google Scholar 

  107. Nagueh S, Mikati I, Kopelen H, Middleton K, Quinonens M, Zoghbi W (1998) Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue Doppler imaging. Circulation 98: 1644–1650

    Article  PubMed  CAS  Google Scholar 

  108. Robotham J, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74: 172–183

    Article  PubMed  CAS  Google Scholar 

  109. Tuman K, McCarthy R, Pharm D, March R, Najafi H, Ivankovich A (1992) Morbidity and duration of ICU stay after cardiac surgery: A model for preoperative risk assessment. Chest 102: 36–44

    Article  PubMed  CAS  Google Scholar 

  110. Tu J, Jaglal S, Naylor D (1995) Multicenter validation of a risk index for mortality, intensive care unit stay, and overall hospital length of stay after cardiac surgery. Circulation 91: 677–684

    Article  Google Scholar 

  111. Higgins T (1998) Quantifying risk and assessing outcome in cardiac surgery. J Cardiothorac Vasc Anesth 12: 330–340

    Article  PubMed  CAS  Google Scholar 

  112. Gault J, Ross J, Braunwald E (1968) Contractile state of the left ventricle in man. Circ Res 22: 451–463

    Article  PubMed  CAS  Google Scholar 

  113. Borow KM, Neumann A, Marcus RH, Sarelli P, Lang RM (1992) Effects of simultaneous alterations in preload and afterload measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol 20: 787–795

    Article  PubMed  CAS  Google Scholar 

  114. Jin XY, Pepper JR, Gibson DG (1996) Effects of incoordination on left ventricular force-velocity relation in aortic stenosis. Heart 76: 695–501

    Article  Google Scholar 

  115. Sharir T, Feldman MD, Haber H, et al (1994) Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 89: 2045–2053

    Article  PubMed  CAS  Google Scholar 

  116. Marmor A, Raphael T, Marmor M, Blondheim D (1996) Evaluation of contractile reserve by dobutamine echocardiography: noninvasive estimation of the severity of heart failure. Am Heart J 132: 1196–1201

    Article  Google Scholar 

  117. Marmor A, Schneeweiss A (1997) Prognostic value of noninvasively obtained left ventricular contractile reserve in patients with severe heart failure. J Am Coll Cardiol 29: 422–428

    Article  PubMed  CAS  Google Scholar 

  118. Avramides D, Perakis A, Voudris V, Gezerlis P (2000) Noninvasive assessment of left ventricular systolic function by stress-shortening relation, rate of change of power, preload-adjusted maximal power, and ejection force in idiopathic dilated cardiomyopathy: prognostic implications. J Am Soc Echocardiogr 13: 87–95

    PubMed  CAS  Google Scholar 

  119. Gorcsan J, Murali S, Counihan PJ, Mandarino WA, Kormos RL (1996) Right ventricular performance and contractile reserve in patients with severe heart failure. Circulation 94: 3190–3197

    Article  PubMed  Google Scholar 

  120. Jamal F, Strotmann J, Weidemann F, et al (2001) Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. Circulation 104: 1059–1065

    Article  PubMed  CAS  Google Scholar 

  121. Seeberger M, Cahalan M, Rouine-Rapp K, et al (1997) Acute hypovolemia may cause segmental wall motion abnormalities in the absence of myocardial ischemia. Anesth Analg 85: 1252–1257

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poelaert, J., Roosens, C., Segers, P. (2002). Monitoring Left Heart Performance in the Critically Ill. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_48

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics