Strong Ions, Acid-base, and Crystalloid Design

  • T. J. Morgan
  • B. Venkatesh

Abstract

It is now generally accepted that whenever large volumes of saline are administered intravenously, metabolic acidosis can result [1–3]. Examples of at risk situations include acute normovolemic hemodilution, cardiopulmonary bypass, hypovolemic and septic shock, multitrauma, burns, liver transplantation, diabetic ketoacidosis and hyperosmolar non-ketotic coma. The conventional explanation is that there is simple dilution of extracellular bicarbonate (HCO 3 ) by large volumes of non-HCO 3 containing fluid [4–7]. However, Stewart’s physical-chemical approach to acid-base analysis provides a different perspective. In this chapter, we will see how Stewart’s concepts might assist in the design of crystalloid solutions with predetermined acid-base effects. We will begin by reviewing some important principles of acid-base analysis with an emphasis on the physical-chemical approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90: 1265–1270PubMedCrossRefGoogle Scholar
  2. 2.
    McFarlane C, Lee A (1994) A comparison of Plasmalyte 148 and 0.9% saline for intra-operative fluid replacement. Anaesthesia 49: 779–781PubMedCrossRefGoogle Scholar
  3. 3.
    Prough DS, Bidani A (1999) Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology 90: 1247–1249PubMedCrossRefGoogle Scholar
  4. 4.
    Mathes DD, Morell RC, Rohr MS (1997) Dilutional acidosis: Is it a real clinical entity? Anesthesiology 86: 501–503PubMedCrossRefGoogle Scholar
  5. 5.
    Goodkin DA, Raja RM, Saven A (1990) Dilutional acidosis. South Med J 83: 354–355PubMedCrossRefGoogle Scholar
  6. 6.
    Garella S, Chang BS, Kahn SI (1975) Dilutional acidosis and contraction alkalosis: Review of a concept. Kidney Int 8: 279–283Google Scholar
  7. 7.
    Prough DS (2000) Acidosis associated with perioperative saline administration. Dilution or delusion? Anesthesiology 93: 1167–1169PubMedCrossRefGoogle Scholar
  8. 8.
    Schwartz WB, Reiman AS (1963) A critique of the parameters used in the evaluation of acid-base disorders. N Engl J Med 268: 1382–1388PubMedCrossRefGoogle Scholar
  9. 9.
    Narins RB, Emmett M (1980) Simple and mixed acid-base disorders: A practical approach. Medicine 59: 161–187Google Scholar
  10. 10.
    Siggaard-Andersen O, Engel K (1960) A micro method for determination of pH, carbon dioxide tension, base excess and standard bicarbonate in capillary blood. Scand J Clin Lab Invest 12: 172–176CrossRefGoogle Scholar
  11. 11.
    Astrup P, Jorgensen K, Siggaard-Andersen O, et al (1960) Acid-base metabolism: New approach. Lancet 1: 1035–1039PubMedCrossRefGoogle Scholar
  12. 12.
    Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anesth Scand Suppl 107: 123–128CrossRefGoogle Scholar
  13. 13.
    Stewart PA (1981) How to understand acid-base. In: Stewart PA (ed) A Quantitative Acid-base Primer for Biology and Medicine. Elsevier, New York, pp 1–286Google Scholar
  14. 14.
    Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–1461PubMedCrossRefGoogle Scholar
  15. 15.
    Story DA, Liskaser F, Bellomo R (2000) Saline infusion, acidosis and the Stewart approach. Anesthesiology 92: 624PubMedCrossRefGoogle Scholar
  16. 16.
    Schlichtig R (1997) [Base excess] vs [strong ion difference]: Which is more helpful? Adv Exp Med Biol 411: 91–95Google Scholar
  17. 17.
    Schlichtig R, Grogono AW, Severinghaus JW (1998) Current status of acid-base quantitation in physiology and medicine. Anesthesiol Clin North Am 16: 211–233CrossRefGoogle Scholar
  18. 18.
    Rossing TH, Maffeo N, Fend V (1986) Acid-base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 61: 2260–2265PubMedGoogle Scholar
  19. 19.
    Wilkes P (1998) Hypoproteinemia, strong-ion difference, and acid-base status in critically ill patients. J Appl Physiol 84: 1740–1748PubMedGoogle Scholar
  20. 20.
    LeBlanc M, Kellum J (1998) Biochemical and biophysical principles of hydrogen ion regulation. In: Ronco C, Bellomo R (eds) Critical Care Nephrology. Kluwer Academic Publishers, Dordrecht, pp 261–277CrossRefGoogle Scholar
  21. 21.
    Miller LR, Waters JH (1997) Mechanism of hyperchloremic nonanion gap acidosis. Anesthesiology 87: 1009–1010PubMedCrossRefGoogle Scholar
  22. 22.
    Storey DA (1999) Intravenous fluid administration and controversies in acid-base. Crit Care Resuscitation 1: 151–156Google Scholar
  23. 23.
    Makoff DL, da Silva JA, Rosenbaum BJ, Levy SE, Maxwell MH (1970) Hypertonic expansion: acid-base and electrolyte changes. Am J Physiol 218: 1201–1207PubMedGoogle Scholar
  24. 24.
    Morgan TJ, Venkatesh B, Hall J (2002) Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med (in press)Google Scholar
  25. 25.
    White SA, Goldhill DR (1997) Is Hartmann’s the solution? Anaesthesia 52: 422–427PubMedCrossRefGoogle Scholar
  26. 26.
    Hartmann AF, Senn MJ (1932) Studies in the metabolism of sodium r-lactate. 1. Response of normal human subjects to the intravenous injection of sodium r-lactate. J Clin Invest 11: 337–344Google Scholar
  27. 27.
    Dorje P, Adhikary G, Tempe DK (2000) Avoiding iatrogenic hyperchloremic acidosis-call for a new crystalloid fluid. Anesthesiology 92: 625–626PubMedCrossRefGoogle Scholar
  28. 28.
    Morgan TJ (1999) The significance of the P50. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg pp 433–447Google Scholar
  29. 29.
    Morgan TJ, Koch D, Morris D, Clague A, Purdie DM (2001) Red cell 2,3-diphosphoglycerate concentrations are reduced in critical illness without net effect on in vivo P50. Anaesth Intensive Care 29: 479–483PubMedGoogle Scholar
  30. 30.
    Forrest DM, Walley KR, Russell JA (1998) Impact of acid-base disorders on individual organ systems In: Ronco C, Bellomo R (eds) Critical Care Nephrology. Kluwer Academic Publishers, Dordrecht, pp 313–326Google Scholar
  31. 31.
    Traverso LW, Lee WP, Langford MJ (1986) Fluid resuscitation after an otherwise fatal hemorrhage: 1. Crystalloids solutions. J Trauma 26: 168–175Google Scholar
  32. 32.
    Liskaser FJ, Bellomo R, Hayhoe M, et al (2000) Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology 93: 1170–1173PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • T. J. Morgan
  • B. Venkatesh

There are no affiliations available

Personalised recommendations