Advertisement

Effect of PEEP and Targets during Mechanical Ventilation in ARDS

  • A. Koutsoukou
  • C. Roussos
  • J. Milic-Emili

Abstract

The acute respiratory distress syndrome (ARDS) is characterized pathologically by alveolar edema, consolidation, atelectasis, hyaline membranes, and, in later stages, fibrosis [1]. These findings vary in severity throughout the involved lungs. The loss of lung units through atelectasis and small airway closure (trapping) has two important physiological consequences: decreased lung compliance (stiff lungs) and small lung volume [2].

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit Adult Respiratory Distress Syndrome Acute Respiratory Distress Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachofen M, Weibel ER (1982) Structural alterations of lung parenchyma in the adult respiratory distress syndrome ( ARDS ). Clin Chest Med 3: 35–56Google Scholar
  2. 2.
    Malo J, Ali J, Wood LD H (1984) How does end-expiratory positive pressure reduce intrapulmonary shunt in canine pulmonary edema?. J Appl Physiol 57: 1002–1010PubMedGoogle Scholar
  3. 3.
    Cook DJ, Walter S, Cook RJ, et al (1998) Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med 129: 433–440PubMedCrossRefGoogle Scholar
  4. 4.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 175: 1721–1725CrossRefGoogle Scholar
  5. 5.
    Bryan CL, Jenkinson SG (1998) Oxygen toxicity. Clin Chest Med 9: 141–152Google Scholar
  6. 6.
    Nash G, Blennerhasset JB, Pontoppidan H (1967) Pulmonary lesions associated with oxygen therapy and artificial ventilation. N Engl J Med 276: 368–374PubMedCrossRefGoogle Scholar
  7. 7.
    Roupie E, Dambrosio M, Servillo, et al (1995) Titration of tidal volume reduction and induced hypercapnia in adult respiratory distress syndrome ( ARDS ). Am J Respir Crit Care Med 152: 121–128PubMedCrossRefGoogle Scholar
  8. 8.
    Crotti S, Mascheroni D, Caironi P, et al (2001) Recruitment and corecruitment during acute respiratory failure. Am J Respir Crit Care Med 164: 131–140PubMedCrossRefGoogle Scholar
  9. 9.
    Ranieri VM, Eissa T, Corbeil C, et al (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 355–360CrossRefGoogle Scholar
  10. 10.
    Marini JJ, Amato MB (1998) Lung recruitment during ARDS. In: Marini JJ, Amato MB (eds) Acute Lung Injury. Springer, Berlin, pp 236–257CrossRefGoogle Scholar
  11. 11.
    Slutsky AS (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833–1859PubMedCrossRefGoogle Scholar
  12. 12.
    Dreyfuss D, Soler P, Basset F, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, tidal volume, and positive end-expiratory pressure Am Rev Respir Dis 137: 1159–1164Google Scholar
  13. 13.
    Dreyfuss D, Basset F, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884PubMedGoogle Scholar
  14. 14.
    Colobow T, Morreti MP, Fumagalli R, et al (1987) Severe impairement in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315Google Scholar
  15. 15.
    Pratt Pc, Vollmer RT, Shelburne JD, Crapo JD (1979) Pulmonary morphology in a multi-hospital collaborative extracorporeal membrane oxygenation project I. Light microscopy. Am J Pathol 95: 191–214Google Scholar
  16. 16.
    Pingleton S (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137: 1463–1493PubMedCrossRefGoogle Scholar
  17. 17.
    Slutsky AS, Scharf SM, Brown R, et al (1980) The effects of oleic-acid-induced pulmonary edema and chest wall mechanics in dogs. Am Rev Respir Dis 121: 91–96PubMedGoogle Scholar
  18. 18.
    Amato MB, Barbas CS, Medeiros DM, et al (1995) Beneficial effects of the `open lung’ approach with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835–1846PubMedCrossRefGoogle Scholar
  19. 19.
    Koutsoukou A, Bekos V, Sotiropoulou CH, et al (2001) Effect of PEEP in mechanically ventilated ARDS patients. Eur Respir J 18: 480s (Abst)Google Scholar
  20. 20.
    Robertson PC, Antonishen NR, Ross D (1969) Effect of inspiratory flow rate on regional distribution of inspired gas. J Appl Physiol 26: 438–443PubMedGoogle Scholar
  21. 21.
    Robertson B (1984) Lung surfactant, In: Robertson B, Van Golde L, Batenburg J (eds) Pulmonary Surfactant. Elsevier, Amsterdam, pp 549–564Google Scholar
  22. 22.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334PubMedCrossRefGoogle Scholar
  23. 23.
    D’Angelo E, Pecchiarii M, Baraggia P, Saetta M, Balesiro E, Milic-Emili J (2002) Low-volume ventilation induces peropheral airways injury and increased airway resistance in normal open-chest rabbits. J Appl Physiol (in press)Google Scholar
  24. 24.
    Koutsoukou A, Armaganidis A, Stavrakaki-Kallergi K, et al (2000) Expiratory flow limitation and intrinsic positive end-expiratory pressure at zere positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 161: 1590–1596PubMedCrossRefGoogle Scholar
  25. 25.
    Hamilton PP, Onayemi A, Smith JA, et al (1983) Comparison of conventional and high frequency jet ventilation: oxygenation and lung pathology. J Appl Physiol 55: 131–138PubMedGoogle Scholar
  26. 26.
    Gattinoni L, D’Andrea L, Pelosi P, et al (1993) Regional effects and mechanism of positive end-expiratory pressure in early respiratory distress syndrome. JAMA 269: 2122–2127PubMedCrossRefGoogle Scholar
  27. 27.
    Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161: 1660–1665PubMedCrossRefGoogle Scholar
  28. 28.
    Artigas A, Bernard GR, Carlet J, et al (1998) The American-European Consensus Conference on ARDS, Part 2. Intensive Care Med 24: 378–398PubMedCrossRefGoogle Scholar
  29. 29.
    Lanchmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 24: 319–321CrossRefGoogle Scholar
  30. 30.
    Matamis D, Lemire F, Harf A, Brun-Buisson C, Ansger JC, Atlan G (1984) Total respiratory system pressure-volume curves in the adult respiratory distress syndrome. Chest 86: 58–66PubMedCrossRefGoogle Scholar
  31. 31.
    Ranieri M, Giunto F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284: 43–44PubMedCrossRefGoogle Scholar
  32. 32.
    Rossi A, Gottfried SB, Zocch L, Lennox S, Carlverly P (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure. Am Rev Respir Dis 131: 672–677PubMedGoogle Scholar
  33. 33.
    Milic-Emili J, Mead J, Turner M (1964) Topography of esophageal pressure as a function of posture in man. J Appl Physiol 19: 212–216PubMedGoogle Scholar
  34. 34.
    The Acute Respiratory Distress Syndrome Network (2000) The acute respiratory distress syndrome. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308CrossRefGoogle Scholar
  35. 35.
    Blanch LR, Fernandez R, Valles J, Solle C, Roussos C, Artigas A (1994) Effect of two tidal volumes on oxygenation and respiratory system mechanics during the early stage of the adult respiratory distress syndrome. J Crit Care 9: 151–158PubMedCrossRefGoogle Scholar
  36. 36.
    Pelosi P, Candringher P, Bottini N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159: 872–880PubMedCrossRefGoogle Scholar
  37. 37.
    Mutoh T, Guest J, Lamm WJ, Albert RK (1992) Prone position alters the effect of volume overload on regional pleural pressure and improves hypoxemia in pigs in vivo. Am Rev Respir Dis 146: 300–306PubMedCrossRefGoogle Scholar
  38. 38.
    Vieira S S, Puibasset L, Lu Q, et al (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Am J Respir Crit Care Med 159: 1612–1613PubMedCrossRefGoogle Scholar
  39. 39.
    Milic-Emili J (1974) Pulmonary statics. In: Widdicombe JG (ed) `MTP’ International Review of Science, Vol 2. Respiratory Physiology. Butterworth Ltd, London, pp 105–137Google Scholar
  40. 40.
    Ranieri VM, Zhang H, Mascia L, et al (2000) Pressure time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93: 1833–1859CrossRefGoogle Scholar
  41. 41.
    Rodarte J R, Hyatt R E, Cortese DA (1975) Influence of expiratory flow on closing capacity at low expiratory flow rates. J Appl Physiol 39: 60–65PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • A. Koutsoukou
  • C. Roussos
  • J. Milic-Emili

There are no affiliations available

Personalised recommendations