Skip to main content

Effect of PEEP and Targets during Mechanical Ventilation in ARDS

  • Chapter
Intensive Care Medicine

Abstract

The acute respiratory distress syndrome (ARDS) is characterized pathologically by alveolar edema, consolidation, atelectasis, hyaline membranes, and, in later stages, fibrosis [1]. These findings vary in severity throughout the involved lungs. The loss of lung units through atelectasis and small airway closure (trapping) has two important physiological consequences: decreased lung compliance (stiff lungs) and small lung volume [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachofen M, Weibel ER (1982) Structural alterations of lung parenchyma in the adult respiratory distress syndrome ( ARDS ). Clin Chest Med 3: 35–56

    Google Scholar 

  2. Malo J, Ali J, Wood LD H (1984) How does end-expiratory positive pressure reduce intrapulmonary shunt in canine pulmonary edema?. J Appl Physiol 57: 1002–1010

    PubMed  CAS  Google Scholar 

  3. Cook DJ, Walter S, Cook RJ, et al (1998) Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med 129: 433–440

    Article  PubMed  CAS  Google Scholar 

  4. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 175: 1721–1725

    Article  Google Scholar 

  5. Bryan CL, Jenkinson SG (1998) Oxygen toxicity. Clin Chest Med 9: 141–152

    Google Scholar 

  6. Nash G, Blennerhasset JB, Pontoppidan H (1967) Pulmonary lesions associated with oxygen therapy and artificial ventilation. N Engl J Med 276: 368–374

    Article  PubMed  CAS  Google Scholar 

  7. Roupie E, Dambrosio M, Servillo, et al (1995) Titration of tidal volume reduction and induced hypercapnia in adult respiratory distress syndrome ( ARDS ). Am J Respir Crit Care Med 152: 121–128

    Article  PubMed  CAS  Google Scholar 

  8. Crotti S, Mascheroni D, Caironi P, et al (2001) Recruitment and corecruitment during acute respiratory failure. Am J Respir Crit Care Med 164: 131–140

    Article  PubMed  CAS  Google Scholar 

  9. Ranieri VM, Eissa T, Corbeil C, et al (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 355–360

    Article  Google Scholar 

  10. Marini JJ, Amato MB (1998) Lung recruitment during ARDS. In: Marini JJ, Amato MB (eds) Acute Lung Injury. Springer, Berlin, pp 236–257

    Chapter  Google Scholar 

  11. Slutsky AS (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833–1859

    Article  PubMed  CAS  Google Scholar 

  12. Dreyfuss D, Soler P, Basset F, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, tidal volume, and positive end-expiratory pressure Am Rev Respir Dis 137: 1159–1164

    CAS  Google Scholar 

  13. Dreyfuss D, Basset F, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  14. Colobow T, Morreti MP, Fumagalli R, et al (1987) Severe impairement in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315

    Google Scholar 

  15. Pratt Pc, Vollmer RT, Shelburne JD, Crapo JD (1979) Pulmonary morphology in a multi-hospital collaborative extracorporeal membrane oxygenation project I. Light microscopy. Am J Pathol 95: 191–214

    Google Scholar 

  16. Pingleton S (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137: 1463–1493

    Article  PubMed  CAS  Google Scholar 

  17. Slutsky AS, Scharf SM, Brown R, et al (1980) The effects of oleic-acid-induced pulmonary edema and chest wall mechanics in dogs. Am Rev Respir Dis 121: 91–96

    PubMed  CAS  Google Scholar 

  18. Amato MB, Barbas CS, Medeiros DM, et al (1995) Beneficial effects of the `open lung’ approach with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835–1846

    Article  PubMed  CAS  Google Scholar 

  19. Koutsoukou A, Bekos V, Sotiropoulou CH, et al (2001) Effect of PEEP in mechanically ventilated ARDS patients. Eur Respir J 18: 480s (Abst)

    Google Scholar 

  20. Robertson PC, Antonishen NR, Ross D (1969) Effect of inspiratory flow rate on regional distribution of inspired gas. J Appl Physiol 26: 438–443

    PubMed  CAS  Google Scholar 

  21. Robertson B (1984) Lung surfactant, In: Robertson B, Van Golde L, Batenburg J (eds) Pulmonary Surfactant. Elsevier, Amsterdam, pp 549–564

    Google Scholar 

  22. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    Article  PubMed  CAS  Google Scholar 

  23. D’Angelo E, Pecchiarii M, Baraggia P, Saetta M, Balesiro E, Milic-Emili J (2002) Low-volume ventilation induces peropheral airways injury and increased airway resistance in normal open-chest rabbits. J Appl Physiol (in press)

    Google Scholar 

  24. Koutsoukou A, Armaganidis A, Stavrakaki-Kallergi K, et al (2000) Expiratory flow limitation and intrinsic positive end-expiratory pressure at zere positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 161: 1590–1596

    Article  PubMed  CAS  Google Scholar 

  25. Hamilton PP, Onayemi A, Smith JA, et al (1983) Comparison of conventional and high frequency jet ventilation: oxygenation and lung pathology. J Appl Physiol 55: 131–138

    PubMed  CAS  Google Scholar 

  26. Gattinoni L, D’Andrea L, Pelosi P, et al (1993) Regional effects and mechanism of positive end-expiratory pressure in early respiratory distress syndrome. JAMA 269: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  27. Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161: 1660–1665

    Article  PubMed  CAS  Google Scholar 

  28. Artigas A, Bernard GR, Carlet J, et al (1998) The American-European Consensus Conference on ARDS, Part 2. Intensive Care Med 24: 378–398

    Article  PubMed  CAS  Google Scholar 

  29. Lanchmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 24: 319–321

    Article  Google Scholar 

  30. Matamis D, Lemire F, Harf A, Brun-Buisson C, Ansger JC, Atlan G (1984) Total respiratory system pressure-volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  PubMed  CAS  Google Scholar 

  31. Ranieri M, Giunto F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284: 43–44

    Article  PubMed  CAS  Google Scholar 

  32. Rossi A, Gottfried SB, Zocch L, Lennox S, Carlverly P (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure. Am Rev Respir Dis 131: 672–677

    PubMed  CAS  Google Scholar 

  33. Milic-Emili J, Mead J, Turner M (1964) Topography of esophageal pressure as a function of posture in man. J Appl Physiol 19: 212–216

    PubMed  CAS  Google Scholar 

  34. The Acute Respiratory Distress Syndrome Network (2000) The acute respiratory distress syndrome. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  35. Blanch LR, Fernandez R, Valles J, Solle C, Roussos C, Artigas A (1994) Effect of two tidal volumes on oxygenation and respiratory system mechanics during the early stage of the adult respiratory distress syndrome. J Crit Care 9: 151–158

    Article  PubMed  CAS  Google Scholar 

  36. Pelosi P, Candringher P, Bottini N, et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159: 872–880

    Article  PubMed  CAS  Google Scholar 

  37. Mutoh T, Guest J, Lamm WJ, Albert RK (1992) Prone position alters the effect of volume overload on regional pleural pressure and improves hypoxemia in pigs in vivo. Am Rev Respir Dis 146: 300–306

    Article  PubMed  CAS  Google Scholar 

  38. Vieira S S, Puibasset L, Lu Q, et al (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Am J Respir Crit Care Med 159: 1612–1613

    Article  PubMed  CAS  Google Scholar 

  39. Milic-Emili J (1974) Pulmonary statics. In: Widdicombe JG (ed) `MTP’ International Review of Science, Vol 2. Respiratory Physiology. Butterworth Ltd, London, pp 105–137

    Google Scholar 

  40. Ranieri VM, Zhang H, Mascia L, et al (2000) Pressure time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93: 1833–1859

    Article  Google Scholar 

  41. Rodarte J R, Hyatt R E, Cortese DA (1975) Influence of expiratory flow on closing capacity at low expiratory flow rates. J Appl Physiol 39: 60–65

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koutsoukou, A., Roussos, C., Milic-Emili, J. (2002). Effect of PEEP and Targets during Mechanical Ventilation in ARDS. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics