Skip to main content

Neural Control of Mechanical Ventilation: A New Approach to Improve Patient-Ventilator Interaction

  • Chapter
Intensive Care Medicine
  • 236 Accesses

Abstract

Mechanical ventilation is used to treat acute respiratory failure. In its most conservative form, mechanical ventilation completely replaces the breathing function of the patient. These so-called ‘controlled’ modes of mechanical ventilation usually require that the patient be sedated or even paralyzed. In non-sedated and spontaneously breathing patients, mechanical ventilation can be delivered by modes of partial ventilatory assist, where mechanical ventilation assists breathing in such a way that ventilation is maintained and that respiratory muscle failure is avoided by unloading the respiratory muscles. Preferably, the ventilatory assist should be delivered in response to the output from respiratory centers, i.e., respond to changes in respiratory demand. Since the respiratory center output is not constant within a given breath, and its duration, shape, and amplitude vary from one breath to the next, a challenge for the application of partial ventilatory assist is therefore to accurately determine:

  • when to cycle-on and cycle-off the assist during each breath (triggering)

  • the profile of assist delivered within a breath (intra-breath assist profile)

  • the level of assist during each breath (level of assist)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck J, Sinderby C, Lindström L, Grassino A (1998) Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol 85: 1123–1134

    PubMed  CAS  Google Scholar 

  2. Lourenco RV, Cherniack NS, Malm JR, Fishman NP (1966) Nervous output from the respiratory center during obstructed breathing. J Appl Physiol 21: 527–533

    PubMed  CAS  Google Scholar 

  3. Beck J, Sinderby C, Weinberg J, Grassino A (1995) Effects of muscle-to-electrode distance on the human diaphragm electromyogram. J Appl Physiol 79: 975–985

    PubMed  CAS  Google Scholar 

  4. Beck J, Sinderby C, Lindström L, Grassino A (1996) Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm EMG. J Appl Physiol 81: 1434–1449

    PubMed  CAS  Google Scholar 

  5. Sinderby C, Beck J, Lindström L, Grassino A (1997) Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol 82: 1370–1377

    PubMed  CAS  Google Scholar 

  6. Sinderby C, Beck J, Weinberg J, Spahija J, Grassino A (1998) Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 85: 2146–2158

    PubMed  CAS  Google Scholar 

  7. Beck J, Gottfried SB, Navalesi P, et al (2001) Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Care Med 164: 419424

    Google Scholar 

  8. Sassoon CSH, Gruer SE (1995) Characteristics of the ventilator pressure-and flow-trigger variables. Intensive Care Med 21: 159–168

    Article  PubMed  CAS  Google Scholar 

  9. Sassoon CSH, Foster GT (2001) Patient-ventilator asynchrony. Curr Opin Grit Care 7: 28–33

    Article  CAS  Google Scholar 

  10. Yamada Y, Du HL (1998) Effects of different pressure support termination on patient-ventilator synchrony. Respir Care 43: 1048–1057

    Google Scholar 

  11. Jubran A, Van de Graaff WB, Tobin MJ (1995) Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152: 129–136

    Article  PubMed  CAS  Google Scholar 

  12. Maclntyre NR (1988) Weaning from mechanical ventilator support: volume assisting intermittent breaths versus pressure assiting every breath. Respir Care 33: 121–125

    Google Scholar 

  13. Brochard L (1994) Pressure Support Ventilation. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. 1st edition. McGraw Hill, New York, pp 239–257

    Google Scholar 

  14. Rossi A, Ranieri MV (1994) Positive end-expiratory pressure. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. 1s` edition. McGraw Hill, New York, pp 259–303

    Google Scholar 

  15. Sinderby C, Navalesi P, Beck J, et al (1999) Neural control of mechanical ventilation. Nature Med 5: 1433–1436

    Article  PubMed  CAS  Google Scholar 

  16. Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155: 1940–148

    Article  PubMed  CAS  Google Scholar 

  17. Hill L (2001) Flow triggering, pressure triggering, and autotriggering during mechanical ventilation. Crit Care Med 28: 579–581

    Article  Google Scholar 

  18. Bernstein G, Knodel E, Heldt GP (1995) Airway leak size in neonates and autocycling of three flow-triggered ventilators. Crit Care Med 23: 1739–1744

    Article  PubMed  CAS  Google Scholar 

  19. Mehta S, McCool FD, Hill NS (2001) Leak compensation in positive pressure ventilators: a lung model study. Eur Respir J 17: 259–267

    Article  PubMed  CAS  Google Scholar 

  20. Younes M (1993) Patient-ventilator interaction with pressure-assisted modalities of ventilatory support. Sem Resp Med 14: 299–322

    Article  Google Scholar 

  21. Yamada Y, Du HL (2000) Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol 88: 2143–2150

    PubMed  CAS  Google Scholar 

  22. Calderini E, Confalonieri M, Puccio PG, Francavilla N, Stella L, Gregoretti C (1999) Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 25: 662–667

    Article  PubMed  CAS  Google Scholar 

  23. Van de Graaff WB, Gordey K, Dornseif SE, et al (1991) Pressure support: changes in ventilatory pattern and components of the work of breathing. Chest 100: 1082–1089

    Article  PubMed  Google Scholar 

  24. Parthasarathy S, Jubran A, Tobin MJ (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Grit Care Med 158: 1471–1478

    Article  CAS  Google Scholar 

  25. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116: 9S - 15S

    Article  PubMed  CAS  Google Scholar 

  26. Henry GW, Stevens CS, Schreiner RL, Grosfeld JL, Ballantine TVN (1979) Respiratory paralysis to improve oxygenation and mortality in large newborn infants with respiratory distress. J Pediatr Surg 14: 761–766

    Article  PubMed  CAS  Google Scholar 

  27. Stark AR, Bascom R, Frantz ID (1978) Muscle relaxation in mechanically ventilated infants. J Pediatr 94: 439–434

    Google Scholar 

  28. Greenough A, Wood S, Morley CJ, Davis JA (1984) Pancuronium prevents pneumothoraces in ventilated premature babies who actively expire against positive pressure ventilation. Lancet 1: 1–13

    Article  PubMed  CAS  Google Scholar 

  29. Greenough A, Morley CJ, Davis JA (1983) Interaction of spontaneous breathing with artificial ventilation in pre-term babies. J Pediatr 103: 769–773

    Article  PubMed  CAS  Google Scholar 

  30. Lipscomb AP, Reynolds EOR, Blackwell RJ, et al (1981) Pneumothorax and cerebral haemorrhage in preterm infants. Lancet 414–416

    Google Scholar 

  31. Guttman J, Haberthur, Mols G (2001) Automatic tube compensation. Respir Care Clin N Am 7: 503–517

    Article  Google Scholar 

  32. Younes M (1992) Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 145: 114–120

    Article  CAS  Google Scholar 

  33. Beck J, Sinderby C, Lindström L, Grassino A (1998) Crural diaphragm activation during dynamic contractions at various inspiratory flow rates. J Appl Physiol 85: 451–458

    PubMed  CAS  Google Scholar 

  34. Grasso S, Puntillo F, Mascia L, et al (2000) Compensation for increase in respiratory workload during mechanical ventilation: Pressure support (PSV) vs. proportional assist ventilation. Am J Respir Crit Care Med 161: 819–826

    Google Scholar 

  35. Brunner IX (2001) Principles and history of closed-loop controlled ventilation. Respir Care Clin N Am 7: 341–362

    Article  PubMed  CAS  Google Scholar 

  36. Ranieri VM (1997) Optimization of patient-ventilator interactions: closed-loop technology to turn the century. Intensive Care Med 23: 936–939

    Article  PubMed  CAS  Google Scholar 

  37. Grasso S, Ranieri VM, Brochard L, et al (2001) Closed loop proportional assist ventilation (PAV): results of a phase II multicenter trial. Am J Respir Crit Care Med 163: A303 (Abst)

    Google Scholar 

  38. Iotti GA, Braschi A (2001) Closed-loop support of ventilatory workload: The pO-1 controller. Respir Care Clin N Am 7: 441–464

    Article  PubMed  CAS  Google Scholar 

  39. lotti GA, Brunner JX, Braschi A, et al (1996) Closed-loop control of airway occlusion pressure at 0.1 second (P0.1) applied to pressure-support ventilation: Algorithm and application in intubated patients. Crit Care Med 24: 771–779

    Google Scholar 

  40. Whitelaw WA, Derenne JP, Milic Emili J (1975) Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 23: 181–199

    Article  PubMed  CAS  Google Scholar 

  41. Spahija J, Beck J, Gottfried S, Comtois N, Comtois A, Sinderby C (2001) Target drive ventilation (TDV): Automatic regulation of ventilatory assist using diaphragm electrical activity. Am J Respir Crit Care Med 163: A303 (Abst)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spahija, J., Beck, J., Sinderby, C. (2002). Neural Control of Mechanical Ventilation: A New Approach to Improve Patient-Ventilator Interaction. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics