Regulatory Role of Nitric Oxide in the Heart of the Critically Ill Patient

  • P. B. Massion
  • J. L. Balligand


More than two decades ago, Furchgott and Zawadzki [1] discovered that intact endothelium was necessary for acetylcholine-induced vasorelaxation. A substance derived from this endothelium, the so-called ‘endothelium-derived relaxing factor’ (EDRF), was born. It took until 1988 for this to be identified as nitric oxide (NO) [2]. In addition to its release in the coronary circulation, NO also reduced contractility in cultured cardiomyocytes [3, 4] and was shown to mediate, at least in part, the septic cardiodepression induced by the ‘myocardial depressant substance’, identified as the combination of tumor necrosis factor (TNF)-a and interleukin (IL)-1 [5]. Since then, this highly diffusable gas has been found to be nearly ubiquitous in the organism in a large variety of cellular types and organs, and implicated in almost all cardiovascular, neuronal, and immune processes.


Nitric Oxide Negative Inotropic Effect Positive Inotropic Effect Cardiac Allograft Vasculopathy Radical Oxygen Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  2. 2.
    Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666PubMedCrossRefGoogle Scholar
  3. 3.
    Balligand JL, Ungureanu D, Kelly RA, et al (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91: 2314–2319PubMedCrossRefGoogle Scholar
  4. 4.
    Brady A], Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963 - H1966PubMedGoogle Scholar
  5. 5.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–958PubMedCrossRefGoogle Scholar
  6. 6.
    Balligand JL, Cannon PJ (1997) Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 17: 1846–1858Google Scholar
  7. 7.
    Ardehali A, Ports TA (1990) Myocardial oxygen supply and demand. Chest 98: 699–705PubMedCrossRefGoogle Scholar
  8. 8.
    Opie LH (2001) Mechanisms of cardiac contraction and relaxation. In: Braunwald E, Zipes DP, Libby P (eds) Heart Disease, 6th edn. Saunders Company, Boston, pp 443–478Google Scholar
  9. 9.
    Rubart M, Zipes DP (2001) Genesis of cardiac arrhythmias: electrophysiological considerations. In: Braunwald E, Zipes DP, Libby P (eds) Heart Disease, 6th edn. Saunders Company, Boston, pp 659–699Google Scholar
  10. 10.
    Balligand JL, Feron O, Kelly RA (2000) Role of nitric oxide in myocardial function. In: Ignarro LJ (ed) Nitric oxide: Biology and Pathobiology. Academic Press, San Diego, pp 585–607CrossRefGoogle Scholar
  11. 11.
    Massion P, Moniotte S, Balligand J (2001) Nitric oxide: does it play a role in the heart of the critically ill? Curr Opin Crit Care 7: 323–336PubMedCrossRefGoogle Scholar
  12. 12.
    Suto N, Mikuniya A, Okubo T, Hanada H, Shinozaki N, Okumura K (1998) Nitric oxide modulates cardiac contractility and oxygen consumption without changing contractile efficiency. Am J Physiol 275: H41 - H49PubMedGoogle Scholar
  13. 13.
    Vanhoutte PM (2000) Say NO to ET. J Auton Nery Syst 81: 271–277CrossRefGoogle Scholar
  14. 14.
    Ding Y, Vaziri ND, Coulson R, Kamanna VS, Roh DD (2000) Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab 279: E11 - E17PubMedGoogle Scholar
  15. 15.
    Gauthier C, Leblais V, Kobzik L, et al (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102: 1377–1384PubMedCrossRefGoogle Scholar
  16. 16.
    Varghese P, Harrison RW, Lofthouse RA, Georgakopoulos D, Berkowitz DE, Hare JM (2000) Beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest 106: 697–703PubMedCrossRefGoogle Scholar
  17. 17.
    Balligand JL (1999) Regulation of cardiac beta-adrenergic response by nitric oxide. Cardiovasc Res 43: 607–620PubMedCrossRefGoogle Scholar
  18. 18.
    Paulus WJ (2001) The role of nitric oxide in the failing heart. Heart Fail Rev 6: 105–118PubMedCrossRefGoogle Scholar
  19. 19.
    Petroff MG, Kim SH, Pepe S, et al (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Cat+ release in cardiomyocytes. Nat Cell Biol 3: 867–873PubMedCrossRefGoogle Scholar
  20. 20.
    Altug S, Demiryurek AT, Kane KA, Kanzik I (2000) Evidence for the involvement of peroxynitrite in ischaemic preconditioning in rat isolated hearts. Br J Pharmacol 130: 125–131PubMedCrossRefGoogle Scholar
  21. 21.
    Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S (2000) The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 97: 14602–14607Google Scholar
  22. 22.
    Trochu JN, Bouhour JB, Kaley G, Hintze TH (2000) Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87: 1108–1117PubMedCrossRefGoogle Scholar
  23. 23.
    Almeida A, Almeida J, Bolanos J, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98: 15294–15299PubMedCrossRefGoogle Scholar
  24. 24.
    Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87: 146–152PubMedCrossRefGoogle Scholar
  25. 25.
    Mital S, Addonizio LJ, Mosca RJ, Quaegebeur JM, Oz MC, Hintze TH (2001) Nitric oxide regulates the apoptotic pathway in explanted failing human hearts. J Heart Lung Transplant 20: 220PubMedCrossRefGoogle Scholar
  26. 26.
    Poderoso JJ, Peralta JG, Lisdero CL, et al (1998) Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart. Am J Physiol 274: C112 - C119PubMedGoogle Scholar
  27. 27.
    Hornig B, Landmesser U, Kohler C, et al (2001) Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103: 799–805PubMedCrossRefGoogle Scholar
  28. 28.
    Broeders MA, Doevendans PA, Bekkers BC, et al (2000) Nebivolol: a third-generation betablocker that augments vascular nitric oxide release: endothelial beta(2)-adrenergic receptor-mediated nitric oxide production. Circulation 102: 677–684PubMedCrossRefGoogle Scholar
  29. 29.
    Depre C, Vanoverschelde JL, Taegtmeyer H (1999) Glucose for the heart. Circulation 99: 578–588PubMedCrossRefGoogle Scholar
  30. 30.
    Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95: 7631–7636PubMedCrossRefGoogle Scholar
  31. 31.
    Xie YW, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ Res 82: 891–897PubMedCrossRefGoogle Scholar
  32. 32.
    Beltran B, Orsi A, Clementi E, Moncada S (2000) Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol 129: 953–960PubMedCrossRefGoogle Scholar
  33. 33.
    Virag L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabo C (1998) Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase ( PARS) activation. Immunology 94: 345–355Google Scholar
  34. 34.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853PubMedCrossRefGoogle Scholar
  35. 35.
    Varenne 0, Sinnaeve P, Gillijns H, et al (2000) Percutaneous gene therapy using recombinant adenoviruses encoding human herpes simplex virus thymidine kinase, human PAI-1, and human NOS3 in balloon-injured porcine coronary arteries. Hum Gene Ther 11: 1329–1339PubMedCrossRefGoogle Scholar
  36. 36.
    Cable DG, Pompili VJ, O’Brien T, Schaff HV (1999) Recombinant gene transfer of endothelial nitric oxide synthase augments coronary artery relaxations during hypoxia. Circulation 100: 1335–1339Google Scholar
  37. 37.
    Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM (2000) Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102: 3098–3103PubMedCrossRefGoogle Scholar
  38. 38.
    Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron 0 (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89: 866–873Google Scholar
  39. 39.
    Stamler JS, Simon DI, Jaraki O, et al (1992) S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89: 8087–8091PubMedCrossRefGoogle Scholar
  40. 40.
    De Caterina R, Libby P, Peng HB, et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96: 60–68PubMedCrossRefGoogle Scholar
  41. 41.
    Takimoto Y, Aoyama T, Keyamura R, et al (2000) Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat. Int J Cardiol 76: 135–145PubMedCrossRefGoogle Scholar
  42. 42.
    Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104: 700–704PubMedCrossRefGoogle Scholar
  43. 43.
    Sam F, Sawyer DB, Xie Z, et al (2001) Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 89: 351–356PubMedCrossRefGoogle Scholar
  44. 44.
    Valen G, Hansson GK, Dumitrescu A, Vaage J (2000) Unstable angina activates myocardial heat shock protein 72, endothelial nitric oxide synthase, and transcription factors NFkappaB and AP-1. Cardiovasc Res 47: 49–56PubMedCrossRefGoogle Scholar
  45. 45.
    Scherrer-Crosbie M, Ullrich R, Bloch KD, et al (2001) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104: 1286–1291PubMedCrossRefGoogle Scholar
  46. 46.
    Priori SG, Napolitano C (2000) From catheters to vectors: the dawn of molecular electrophysiology. Nat Med 6: 1316–1318PubMedCrossRefGoogle Scholar
  47. 47.
    Bolli R (2000) The late phase of preconditioning. Circ Res 87: 972–983PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC (2000) Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation 102: 902–907PubMedCrossRefGoogle Scholar
  49. 49.
    Neviere RR, Li FY, Singh T, Myers ML, Sibbald W (2000) Endotoxin induces a dose-dependent myocardial cross-tolerance to ischemia-reperfusion injury. Crit Care Med 28: 1439–1444PubMedCrossRefGoogle Scholar
  50. 50.
    Iwata A, Sai S, Nitta Y, et al (2001) Liposome-mediated gene transfection of endothelial nitric oxide synthase reduces endothelial activation and leukocyte infiltration in transplanted hearts. Circulation 103: 2753–2759PubMedCrossRefGoogle Scholar
  51. 51.
    Lefer DJ, Scalia R, Campbell B, et al (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 99: 684–691PubMedCrossRefGoogle Scholar
  52. 52.
    Munzel T, Li H, Mollnau H, et al (2000) Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 86: E7 - E12PubMedCrossRefGoogle Scholar
  53. 53.
    Depre C, Vanoverschelde JL, Goudemant JF, Mottet I, Hue L (1995) Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the per-fused rabbit heart. Circulation 92: 1911–1918PubMedCrossRefGoogle Scholar
  54. 54.
    Diaz R, Paolasso EA, Piegas LS, et al (1998) Metabolic modulation of acute myocardial infarction. The ECLA ( Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 98: 2227–2234PubMedCrossRefGoogle Scholar
  55. 55.
    Coleman GM, Gradinac S, Taegtmeyer H, Sweeney M, Frazier OH (1989) Efficacy of metabolic support with glucose-insulin-potassium for left ventricular pump failure after aortocoronary bypass surgery. Circulation 80: I91 - I96PubMedGoogle Scholar
  56. 56.
    Apstein CS (2000) Increased glycolytic substrate protection improves ischemic cardiac dysfunction and reduces injury. Am Heart J 139: S107 - S114PubMedCrossRefGoogle Scholar
  57. 57.
    Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol 278: H1345 - H1351Google Scholar
  58. 58.
    Aljada A, Saadeh R, Assian E, Ghanim H, Dandona P (2000) Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab 85: 2572–2575PubMedCrossRefGoogle Scholar
  59. 59.
    Baumann CA, Saltiel AR (2001) Spatial compartmentalization of signal transduction in insulin action. Bioessays 23: 215–222PubMedCrossRefGoogle Scholar
  60. 60.
    Van den Berghe G, Wouters P, et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–1367PubMedCrossRefGoogle Scholar
  61. 61.
    Heymes C, Vanderheyden M, Bronzwaer JG, Shah AM, Paulus WJ (1999) Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 99: 3009–3016PubMedCrossRefGoogle Scholar
  62. 62.
    Nikolaidis LA, Hentosz T, Doverspike A, et al (2001) Mechanisms whereby rapid RV pacing causes LV dysfunction: perfusion-contraction matching and NO. Am J Physiol 281: H2270 - H2281Google Scholar
  63. 63.
    Nakamura R, Egashira K, Arimura K, et al (2001) Increased inactivation of nitric oxide is involved in impaired coronary flow reserve in heart failure. Am J Physiol 281: H2619 - H2625Google Scholar
  64. 64.
    Cotter G, Kaluski E, Blatt A, et al (2000) L-NMMA (a nitric oxide synthase inhibitor) is effective in the treatment of cardiogenic shock. Circulation 101: 1358–1361PubMedCrossRefGoogle Scholar
  65. 65.
    Hare JM, Givertz MM, Creager MA, Colucci WS (1998) Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: potentiation of beta-adrenergic inotropic responsiveness. Circulation 97: 161–166PubMedCrossRefGoogle Scholar
  66. 66.
    Shinke T, Takaoka H, Takeuchi M, et al (2000) Nitric oxide spares myocardial oxygen consumption through attenuation of contractile response to beta-adrenergic stimulation in patients with idiopathic dilated cardiomyopathy. Circulation 101: 1925–1930PubMedCrossRefGoogle Scholar
  67. 67.
    Harrison RW, Thakkar RN, Senzaki H, et al (2000) Relative contribution of preload and afterload to the reduction in cardiac output caused by nitric oxide synthase inhibition with L-N(G)- methylarginine hydrochloride 546C88. Crit Care Med 28: 1263–1268PubMedCrossRefGoogle Scholar
  68. 68.
    Loke KE, Laycock SK, Mital S, et al (1999) Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation 100: 1291–1297PubMedCrossRefGoogle Scholar
  69. 69.
    Bartunek J, Shah AM, Vanderheyden M, Paulus WJ (1997) Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Circulation 95: 90–96PubMedCrossRefGoogle Scholar
  70. 70.
    Mitai S, Loke KE, Addonizio LJ, Oz MC, Hintze TH (2000) Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respiration in failing human hearts. J Am Coll Cardiol 36: 1897–1902CrossRefGoogle Scholar
  71. 71.
    Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor down-regulation in the failing human heart. Circulation 104: 881–886PubMedCrossRefGoogle Scholar
  72. 72.
    Bristow MR, Ginsburg R, Minobe W, et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307: 205–211PubMedCrossRefGoogle Scholar
  73. 73.
    Moniotte S, Kobzik L, Feron 0, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-Adrenoceptors and Altered Contractile Response to Inotropic Amines in Human Failing Myocardium. Circulation 103: 1649–1655PubMedCrossRefGoogle Scholar
  74. 74.
    Vincent JL, Zhang H, Szabo C, Preiser JC (2000) Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 161: 1781–1785PubMedCrossRefGoogle Scholar
  75. 75.
    Pinsky MR, Rico P (2000) Cardiac contractility is not depressed in early canine endotoxic shock. Am J Respir Crit Care Med 161: 1087–1093PubMedCrossRefGoogle Scholar
  76. 76.
    Grandel U, Sibelius U, Schrickel J, et al (2001) Biosynthesis of constitutive nitric oxide synthase-derived nitric oxide attenuates coronary vasoconstriction and myocardial depression in a model of septic heart failure induced by Staphylococcus aureus alpha-toxin. Crit Care Med 29: 1–7PubMedCrossRefGoogle Scholar
  77. 77.
    Grandel U, Fink L, Blum A, et al (2000) Endotoxin-induced myocardial tumor necrosis factor-alpha synthesis depresses contractility of isolated rat hearts: Evidence for a role of sphingosine and cyclooxygenase-2-derived thromboxane production. Circulation 102: 2758–2764PubMedCrossRefGoogle Scholar
  78. 78.
    Joe EK, Schussheim AE, Longrois D, et al (1998) Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. J Mol Cell Cardiol 30: 303–315PubMedCrossRefGoogle Scholar
  79. 79.
    Tatsumi T, Matoba S, Kawahara A, et al (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 35: 1338–1346PubMedCrossRefGoogle Scholar
  80. 80.
    Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87: 241–247PubMedCrossRefGoogle Scholar
  81. 81.
    Ullrich R, Scherrer-Crosbie M, Bloch KD, et al (2000) Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102: 1440–1446PubMedCrossRefGoogle Scholar
  82. 82.
    Kumar A, Osman J (2001) Septic myocardial depression: no “no” to no? Crit Care Med 29: 202–203PubMedCrossRefGoogle Scholar
  83. 83.
    Tavernier B, Li JM, El Omar MM, et al (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15: 294–296PubMedGoogle Scholar
  84. 84.
    Bozkurt B, Kribbs SB, Clubb FJ Jr, et al (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97: 1382–1391PubMedCrossRefGoogle Scholar
  85. 85.
    Bolger AP, Anker SD (2000) Tumour necrosis factor in chronic heart failure: a peripheral view on pathogenesis, clinical manifestations and therapeutic implications. Drugs 60: 1245–1257PubMedCrossRefGoogle Scholar
  86. 86.
    Bryant D, Becker L, Richardson J, et al (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97: 1375–1381PubMedCrossRefGoogle Scholar
  87. 87.
    Frantz S, Kobzik L, Kim YD, et al (1999) To114 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104: 271–280PubMedCrossRefGoogle Scholar
  88. 88.
    Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL (2000) Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway. Circulation 102: 1302–1307PubMedCrossRefGoogle Scholar
  89. 89.
    Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL (1999) An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med 27: 913–922Google Scholar
  90. 90.
    Avontuur JA, Tutein Nolthenius RP, Buijk SL, Kanhai KJ, Bruining HA (1998) Effect of L-NAME, an inhibitor of nitric oxide synthesis, on cardiopulmonary function in human septic shock. Chest 113: 1640–1646PubMedCrossRefGoogle Scholar
  91. 91.
    Devaux Y, Seguin C, Grosjean S, et al (2001) Lipopolysaccharide-induced increase of prostaglandin E(2) is mediated by inducible nitric oxide synthase activation of the constitutive cyclooxygenase and induction of membrane-associated prostaglandin E synthase. J Immunol 167: 3962–3971Google Scholar
  92. 92.
    Cannon P, Yang X, Szabolcs MJ, Ravalli S, Sciacca RR, Michler RE (1998) The role of inducible nitric oxide synthase in cardiac allograft rejection. Cardiovasc Res 38: 6–15PubMedCrossRefGoogle Scholar
  93. 93.
    Szabolcs MJ, Ma N, Athan E, et al (2001) Acute cardiac allograft rejection in nitric oxide synthase-2(-/-) and nitric oxide synthase-2(+/+) mice: effects of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation 103: 2514–2520PubMedCrossRefGoogle Scholar
  94. 94.
    Pieper GM, Olds C, Hilton G, Lindholm PF, Adams MB, Roza AM (2001) Antioxidant treatment inhibits activation of myocardial nuclear factor kappa B and inhibits nitrosylation of myocardial heme protein in cardiac transplant rejection. Antioxid Redox Signal 3: 81–88PubMedCrossRefGoogle Scholar
  95. 95.
    Koglin J (2000) Pathogenetic mechanisms of cardiac allograft vasculopathy - impact of nitric oxide. Z Kardiol 89 Suppl 9:IX/24-IX/27Google Scholar
  96. 96.
    Wang CY, Aronson I, Takuma S, et al (2000) cAMP pulse during preservation inhibits the late development of cardiac isograft and allograft vasculopathy. Circ Res 86: 982–988Google Scholar
  97. 97.
    MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323–350PubMedCrossRefGoogle Scholar
  98. 98.
    Eriksson U, Kurrer MO, Bingisser R, et al (2001) Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103: 18–21PubMedCrossRefGoogle Scholar
  99. 99.
    Badorff C, Fichtlscherer B, Rhoads RE, et al (2000) Nitric oxide inhibits dystrophin proteolysis by coxsackieviral protease 2A through S-nitrosylation: A protective mechanism against enteroviral cardiomyopathy. Circulation 102: 2276–2281PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • P. B. Massion
  • J. L. Balligand

There are no affiliations available

Personalised recommendations