Skip to main content

Regulatory Role of Nitric Oxide in the Heart of the Critically Ill Patient

  • Chapter
  • 226 Accesses

Abstract

More than two decades ago, Furchgott and Zawadzki [1] discovered that intact endothelium was necessary for acetylcholine-induced vasorelaxation. A substance derived from this endothelium, the so-called ‘endothelium-derived relaxing factor’ (EDRF), was born. It took until 1988 for this to be identified as nitric oxide (NO) [2]. In addition to its release in the coronary circulation, NO also reduced contractility in cultured cardiomyocytes [3, 4] and was shown to mediate, at least in part, the septic cardiodepression induced by the ‘myocardial depressant substance’, identified as the combination of tumor necrosis factor (TNF)-a and interleukin (IL)-1 [5]. Since then, this highly diffusable gas has been found to be nearly ubiquitous in the organism in a large variety of cellular types and organs, and implicated in almost all cardiovascular, neuronal, and immune processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  PubMed  CAS  Google Scholar 

  2. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666

    Article  PubMed  CAS  Google Scholar 

  3. Balligand JL, Ungureanu D, Kelly RA, et al (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91: 2314–2319

    Article  PubMed  CAS  Google Scholar 

  4. Brady A], Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963 - H1966

    PubMed  CAS  Google Scholar 

  5. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–958

    Article  PubMed  CAS  Google Scholar 

  6. Balligand JL, Cannon PJ (1997) Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 17: 1846–1858

    Google Scholar 

  7. Ardehali A, Ports TA (1990) Myocardial oxygen supply and demand. Chest 98: 699–705

    Article  PubMed  CAS  Google Scholar 

  8. Opie LH (2001) Mechanisms of cardiac contraction and relaxation. In: Braunwald E, Zipes DP, Libby P (eds) Heart Disease, 6th edn. Saunders Company, Boston, pp 443–478

    Google Scholar 

  9. Rubart M, Zipes DP (2001) Genesis of cardiac arrhythmias: electrophysiological considerations. In: Braunwald E, Zipes DP, Libby P (eds) Heart Disease, 6th edn. Saunders Company, Boston, pp 659–699

    Google Scholar 

  10. Balligand JL, Feron O, Kelly RA (2000) Role of nitric oxide in myocardial function. In: Ignarro LJ (ed) Nitric oxide: Biology and Pathobiology. Academic Press, San Diego, pp 585–607

    Chapter  Google Scholar 

  11. Massion P, Moniotte S, Balligand J (2001) Nitric oxide: does it play a role in the heart of the critically ill? Curr Opin Crit Care 7: 323–336

    Article  PubMed  CAS  Google Scholar 

  12. Suto N, Mikuniya A, Okubo T, Hanada H, Shinozaki N, Okumura K (1998) Nitric oxide modulates cardiac contractility and oxygen consumption without changing contractile efficiency. Am J Physiol 275: H41 - H49

    PubMed  CAS  Google Scholar 

  13. Vanhoutte PM (2000) Say NO to ET. J Auton Nery Syst 81: 271–277

    Article  CAS  Google Scholar 

  14. Ding Y, Vaziri ND, Coulson R, Kamanna VS, Roh DD (2000) Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab 279: E11 - E17

    PubMed  CAS  Google Scholar 

  15. Gauthier C, Leblais V, Kobzik L, et al (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102: 1377–1384

    Article  PubMed  CAS  Google Scholar 

  16. Varghese P, Harrison RW, Lofthouse RA, Georgakopoulos D, Berkowitz DE, Hare JM (2000) Beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest 106: 697–703

    Article  PubMed  CAS  Google Scholar 

  17. Balligand JL (1999) Regulation of cardiac beta-adrenergic response by nitric oxide. Cardiovasc Res 43: 607–620

    Article  PubMed  CAS  Google Scholar 

  18. Paulus WJ (2001) The role of nitric oxide in the failing heart. Heart Fail Rev 6: 105–118

    Article  PubMed  CAS  Google Scholar 

  19. Petroff MG, Kim SH, Pepe S, et al (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Cat+ release in cardiomyocytes. Nat Cell Biol 3: 867–873

    Article  PubMed  CAS  Google Scholar 

  20. Altug S, Demiryurek AT, Kane KA, Kanzik I (2000) Evidence for the involvement of peroxynitrite in ischaemic preconditioning in rat isolated hearts. Br J Pharmacol 130: 125–131

    Article  PubMed  CAS  Google Scholar 

  21. Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S (2000) The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 97: 14602–14607

    Google Scholar 

  22. Trochu JN, Bouhour JB, Kaley G, Hintze TH (2000) Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87: 1108–1117

    Article  PubMed  CAS  Google Scholar 

  23. Almeida A, Almeida J, Bolanos J, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98: 15294–15299

    Article  PubMed  CAS  Google Scholar 

  24. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87: 146–152

    Article  PubMed  CAS  Google Scholar 

  25. Mital S, Addonizio LJ, Mosca RJ, Quaegebeur JM, Oz MC, Hintze TH (2001) Nitric oxide regulates the apoptotic pathway in explanted failing human hearts. J Heart Lung Transplant 20: 220

    Article  PubMed  Google Scholar 

  26. Poderoso JJ, Peralta JG, Lisdero CL, et al (1998) Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart. Am J Physiol 274: C112 - C119

    PubMed  CAS  Google Scholar 

  27. Hornig B, Landmesser U, Kohler C, et al (2001) Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103: 799–805

    Article  PubMed  CAS  Google Scholar 

  28. Broeders MA, Doevendans PA, Bekkers BC, et al (2000) Nebivolol: a third-generation betablocker that augments vascular nitric oxide release: endothelial beta(2)-adrenergic receptor-mediated nitric oxide production. Circulation 102: 677–684

    Article  PubMed  CAS  Google Scholar 

  29. Depre C, Vanoverschelde JL, Taegtmeyer H (1999) Glucose for the heart. Circulation 99: 578–588

    Article  PubMed  CAS  Google Scholar 

  30. Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95: 7631–7636

    Article  PubMed  CAS  Google Scholar 

  31. Xie YW, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ Res 82: 891–897

    Article  PubMed  CAS  Google Scholar 

  32. Beltran B, Orsi A, Clementi E, Moncada S (2000) Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol 129: 953–960

    Article  PubMed  CAS  Google Scholar 

  33. Virag L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabo C (1998) Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase ( PARS) activation. Immunology 94: 345–355

    Google Scholar 

  34. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853

    Article  PubMed  CAS  Google Scholar 

  35. Varenne 0, Sinnaeve P, Gillijns H, et al (2000) Percutaneous gene therapy using recombinant adenoviruses encoding human herpes simplex virus thymidine kinase, human PAI-1, and human NOS3 in balloon-injured porcine coronary arteries. Hum Gene Ther 11: 1329–1339

    Article  PubMed  Google Scholar 

  36. Cable DG, Pompili VJ, O’Brien T, Schaff HV (1999) Recombinant gene transfer of endothelial nitric oxide synthase augments coronary artery relaxations during hypoxia. Circulation 100: 1335–1339

    Google Scholar 

  37. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM (2000) Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102: 3098–3103

    Article  PubMed  CAS  Google Scholar 

  38. Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron 0 (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89: 866–873

    CAS  Google Scholar 

  39. Stamler JS, Simon DI, Jaraki O, et al (1992) S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89: 8087–8091

    Article  PubMed  CAS  Google Scholar 

  40. De Caterina R, Libby P, Peng HB, et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96: 60–68

    Article  PubMed  Google Scholar 

  41. Takimoto Y, Aoyama T, Keyamura R, et al (2000) Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat. Int J Cardiol 76: 135–145

    Article  PubMed  CAS  Google Scholar 

  42. Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104: 700–704

    Article  PubMed  CAS  Google Scholar 

  43. Sam F, Sawyer DB, Xie Z, et al (2001) Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 89: 351–356

    Article  PubMed  CAS  Google Scholar 

  44. Valen G, Hansson GK, Dumitrescu A, Vaage J (2000) Unstable angina activates myocardial heat shock protein 72, endothelial nitric oxide synthase, and transcription factors NFkappaB and AP-1. Cardiovasc Res 47: 49–56

    Article  PubMed  CAS  Google Scholar 

  45. Scherrer-Crosbie M, Ullrich R, Bloch KD, et al (2001) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104: 1286–1291

    Article  PubMed  CAS  Google Scholar 

  46. Priori SG, Napolitano C (2000) From catheters to vectors: the dawn of molecular electrophysiology. Nat Med 6: 1316–1318

    Article  PubMed  CAS  Google Scholar 

  47. Bolli R (2000) The late phase of preconditioning. Circ Res 87: 972–983

    Article  PubMed  CAS  Google Scholar 

  48. Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC (2000) Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation 102: 902–907

    Article  PubMed  CAS  Google Scholar 

  49. Neviere RR, Li FY, Singh T, Myers ML, Sibbald W (2000) Endotoxin induces a dose-dependent myocardial cross-tolerance to ischemia-reperfusion injury. Crit Care Med 28: 1439–1444

    Article  PubMed  CAS  Google Scholar 

  50. Iwata A, Sai S, Nitta Y, et al (2001) Liposome-mediated gene transfection of endothelial nitric oxide synthase reduces endothelial activation and leukocyte infiltration in transplanted hearts. Circulation 103: 2753–2759

    Article  PubMed  CAS  Google Scholar 

  51. Lefer DJ, Scalia R, Campbell B, et al (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 99: 684–691

    Article  PubMed  CAS  Google Scholar 

  52. Munzel T, Li H, Mollnau H, et al (2000) Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 86: E7 - E12

    Article  PubMed  CAS  Google Scholar 

  53. Depre C, Vanoverschelde JL, Goudemant JF, Mottet I, Hue L (1995) Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the per-fused rabbit heart. Circulation 92: 1911–1918

    Article  PubMed  CAS  Google Scholar 

  54. Diaz R, Paolasso EA, Piegas LS, et al (1998) Metabolic modulation of acute myocardial infarction. The ECLA ( Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 98: 2227–2234

    Article  PubMed  CAS  Google Scholar 

  55. Coleman GM, Gradinac S, Taegtmeyer H, Sweeney M, Frazier OH (1989) Efficacy of metabolic support with glucose-insulin-potassium for left ventricular pump failure after aortocoronary bypass surgery. Circulation 80: I91 - I96

    PubMed  CAS  Google Scholar 

  56. Apstein CS (2000) Increased glycolytic substrate protection improves ischemic cardiac dysfunction and reduces injury. Am Heart J 139: S107 - S114

    Article  PubMed  CAS  Google Scholar 

  57. Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol 278: H1345 - H1351

    CAS  Google Scholar 

  58. Aljada A, Saadeh R, Assian E, Ghanim H, Dandona P (2000) Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab 85: 2572–2575

    Article  PubMed  CAS  Google Scholar 

  59. Baumann CA, Saltiel AR (2001) Spatial compartmentalization of signal transduction in insulin action. Bioessays 23: 215–222

    Article  PubMed  CAS  Google Scholar 

  60. Van den Berghe G, Wouters P, et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–1367

    Article  PubMed  Google Scholar 

  61. Heymes C, Vanderheyden M, Bronzwaer JG, Shah AM, Paulus WJ (1999) Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 99: 3009–3016

    Article  PubMed  CAS  Google Scholar 

  62. Nikolaidis LA, Hentosz T, Doverspike A, et al (2001) Mechanisms whereby rapid RV pacing causes LV dysfunction: perfusion-contraction matching and NO. Am J Physiol 281: H2270 - H2281

    CAS  Google Scholar 

  63. Nakamura R, Egashira K, Arimura K, et al (2001) Increased inactivation of nitric oxide is involved in impaired coronary flow reserve in heart failure. Am J Physiol 281: H2619 - H2625

    CAS  Google Scholar 

  64. Cotter G, Kaluski E, Blatt A, et al (2000) L-NMMA (a nitric oxide synthase inhibitor) is effective in the treatment of cardiogenic shock. Circulation 101: 1358–1361

    Article  PubMed  CAS  Google Scholar 

  65. Hare JM, Givertz MM, Creager MA, Colucci WS (1998) Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: potentiation of beta-adrenergic inotropic responsiveness. Circulation 97: 161–166

    Article  PubMed  CAS  Google Scholar 

  66. Shinke T, Takaoka H, Takeuchi M, et al (2000) Nitric oxide spares myocardial oxygen consumption through attenuation of contractile response to beta-adrenergic stimulation in patients with idiopathic dilated cardiomyopathy. Circulation 101: 1925–1930

    Article  PubMed  CAS  Google Scholar 

  67. Harrison RW, Thakkar RN, Senzaki H, et al (2000) Relative contribution of preload and afterload to the reduction in cardiac output caused by nitric oxide synthase inhibition with L-N(G)- methylarginine hydrochloride 546C88. Crit Care Med 28: 1263–1268

    Article  PubMed  CAS  Google Scholar 

  68. Loke KE, Laycock SK, Mital S, et al (1999) Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation 100: 1291–1297

    Article  PubMed  CAS  Google Scholar 

  69. Bartunek J, Shah AM, Vanderheyden M, Paulus WJ (1997) Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Circulation 95: 90–96

    Article  PubMed  Google Scholar 

  70. Mitai S, Loke KE, Addonizio LJ, Oz MC, Hintze TH (2000) Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respiration in failing human hearts. J Am Coll Cardiol 36: 1897–1902

    Article  Google Scholar 

  71. Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor down-regulation in the failing human heart. Circulation 104: 881–886

    Article  PubMed  CAS  Google Scholar 

  72. Bristow MR, Ginsburg R, Minobe W, et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307: 205–211

    Article  PubMed  CAS  Google Scholar 

  73. Moniotte S, Kobzik L, Feron 0, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-Adrenoceptors and Altered Contractile Response to Inotropic Amines in Human Failing Myocardium. Circulation 103: 1649–1655

    Article  PubMed  CAS  Google Scholar 

  74. Vincent JL, Zhang H, Szabo C, Preiser JC (2000) Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 161: 1781–1785

    Article  PubMed  CAS  Google Scholar 

  75. Pinsky MR, Rico P (2000) Cardiac contractility is not depressed in early canine endotoxic shock. Am J Respir Crit Care Med 161: 1087–1093

    Article  PubMed  CAS  Google Scholar 

  76. Grandel U, Sibelius U, Schrickel J, et al (2001) Biosynthesis of constitutive nitric oxide synthase-derived nitric oxide attenuates coronary vasoconstriction and myocardial depression in a model of septic heart failure induced by Staphylococcus aureus alpha-toxin. Crit Care Med 29: 1–7

    Article  PubMed  CAS  Google Scholar 

  77. Grandel U, Fink L, Blum A, et al (2000) Endotoxin-induced myocardial tumor necrosis factor-alpha synthesis depresses contractility of isolated rat hearts: Evidence for a role of sphingosine and cyclooxygenase-2-derived thromboxane production. Circulation 102: 2758–2764

    Article  PubMed  CAS  Google Scholar 

  78. Joe EK, Schussheim AE, Longrois D, et al (1998) Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. J Mol Cell Cardiol 30: 303–315

    Article  PubMed  CAS  Google Scholar 

  79. Tatsumi T, Matoba S, Kawahara A, et al (2000) Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. J Am Coll Cardiol 35: 1338–1346

    Article  PubMed  CAS  Google Scholar 

  80. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87: 241–247

    Article  PubMed  CAS  Google Scholar 

  81. Ullrich R, Scherrer-Crosbie M, Bloch KD, et al (2000) Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102: 1440–1446

    Article  PubMed  CAS  Google Scholar 

  82. Kumar A, Osman J (2001) Septic myocardial depression: no “no” to no? Crit Care Med 29: 202–203

    Article  PubMed  CAS  Google Scholar 

  83. Tavernier B, Li JM, El Omar MM, et al (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15: 294–296

    PubMed  CAS  Google Scholar 

  84. Bozkurt B, Kribbs SB, Clubb FJ Jr, et al (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97: 1382–1391

    Article  PubMed  CAS  Google Scholar 

  85. Bolger AP, Anker SD (2000) Tumour necrosis factor in chronic heart failure: a peripheral view on pathogenesis, clinical manifestations and therapeutic implications. Drugs 60: 1245–1257

    Article  PubMed  CAS  Google Scholar 

  86. Bryant D, Becker L, Richardson J, et al (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97: 1375–1381

    Article  PubMed  CAS  Google Scholar 

  87. Frantz S, Kobzik L, Kim YD, et al (1999) To114 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104: 271–280

    Article  PubMed  CAS  Google Scholar 

  88. Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL (2000) Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway. Circulation 102: 1302–1307

    Article  PubMed  CAS  Google Scholar 

  89. Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL (1999) An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med 27: 913–922

    Google Scholar 

  90. Avontuur JA, Tutein Nolthenius RP, Buijk SL, Kanhai KJ, Bruining HA (1998) Effect of L-NAME, an inhibitor of nitric oxide synthesis, on cardiopulmonary function in human septic shock. Chest 113: 1640–1646

    Article  PubMed  CAS  Google Scholar 

  91. Devaux Y, Seguin C, Grosjean S, et al (2001) Lipopolysaccharide-induced increase of prostaglandin E(2) is mediated by inducible nitric oxide synthase activation of the constitutive cyclooxygenase and induction of membrane-associated prostaglandin E synthase. J Immunol 167: 3962–3971

    CAS  Google Scholar 

  92. Cannon P, Yang X, Szabolcs MJ, Ravalli S, Sciacca RR, Michler RE (1998) The role of inducible nitric oxide synthase in cardiac allograft rejection. Cardiovasc Res 38: 6–15

    Article  PubMed  CAS  Google Scholar 

  93. Szabolcs MJ, Ma N, Athan E, et al (2001) Acute cardiac allograft rejection in nitric oxide synthase-2(-/-) and nitric oxide synthase-2(+/+) mice: effects of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation 103: 2514–2520

    Article  PubMed  CAS  Google Scholar 

  94. Pieper GM, Olds C, Hilton G, Lindholm PF, Adams MB, Roza AM (2001) Antioxidant treatment inhibits activation of myocardial nuclear factor kappa B and inhibits nitrosylation of myocardial heme protein in cardiac transplant rejection. Antioxid Redox Signal 3: 81–88

    Article  PubMed  CAS  Google Scholar 

  95. Koglin J (2000) Pathogenetic mechanisms of cardiac allograft vasculopathy - impact of nitric oxide. Z Kardiol 89 Suppl 9:IX/24-IX/27

    Google Scholar 

  96. Wang CY, Aronson I, Takuma S, et al (2000) cAMP pulse during preservation inhibits the late development of cardiac isograft and allograft vasculopathy. Circ Res 86: 982–988

    Google Scholar 

  97. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323–350

    Article  PubMed  CAS  Google Scholar 

  98. Eriksson U, Kurrer MO, Bingisser R, et al (2001) Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103: 18–21

    Article  PubMed  CAS  Google Scholar 

  99. Badorff C, Fichtlscherer B, Rhoads RE, et al (2000) Nitric oxide inhibits dystrophin proteolysis by coxsackieviral protease 2A through S-nitrosylation: A protective mechanism against enteroviral cardiomyopathy. Circulation 102: 2276–2281

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Massion, P.B., Balligand, J.L. (2002). Regulatory Role of Nitric Oxide in the Heart of the Critically Ill Patient. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics