Effects of Anesthetics on Ischemia-reperfusion Injury of the Heart

  • B. Preckel
  • W. Schlack


Ischemia-reperfusion (I/R) situations may occur in different clinical settings, for example, during percutaneous balloon angioplasty or after coronary artery bypass surgery. Depending on the duration of ischemia, the lack of oxygen supply may result in reversible, or irreversible, damage to the cardiomyocytes. Early restoration of coronary artery blood flow is the main goal in the treatment of patients with acute coronary syndromes and in patients with extracorporal circulation and interruption of coronary perfusion for cardiac surgery. However, reperfusion of temporarily ischemic myocardium can initiate cellular and biochemical changes which reduce the amount of potentially salvageable myocardium. This phenomenon is called ‘reperfusion injury’ and is — in contrast to the ischemic injury — not the direct result of oxygen deprivation.


Reperfusion Injury Volatile Anesthetic Minimum Alveolar Concentration Reduce Infarct Size Myocardial Reperfusion Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spieckermann PG, Bruckner JB, Kübler W, Lohr B, Bretschneider HJ (1969) Preischemic stress and resuscitation time of the heart. Verhandl Dt Ges Herz- Kreislaufforsch 33: 358–364CrossRefGoogle Scholar
  2. 2.
    Davis RF, DeBoer LW, Rude RE, Lowenstein E, Maroko PR (1983) The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology 59: 402–411PubMedCrossRefGoogle Scholar
  3. 3.
    Buljubasic N, Stowe DF, Marijic J, Roerig DL, Kampine JP, Bosnjak ZJ (1993) Halothane reduces release of adenosine, inosine, and lactate with ischemia and reperfusion in isolated hearts. Anesth Analg 76: 54–62PubMedCrossRefGoogle Scholar
  4. 4.
    Buljubasic N, Stowe DF, Marijic J, Kampine JP, Bosnjak ZJ (1992) Halothane reduces dysrhythmias and improves contractile function after global hypoperfusion in isolated hearts. Anesth Analg 74: 384–394PubMedCrossRefGoogle Scholar
  5. 5.
    Marijic J, Stowe DF, Turner LA, Kampine JP, Bosnjak ZJ (1990) Differential protective effects of halothane and isoflurane against hypoxic and reoxygenation injury in the isolated guinea pig heart. Anesthesiology 73: 976–983PubMedCrossRefGoogle Scholar
  6. 6.
    Coetzee A, Skein W, Genade S, Lochner A (1993) Enflurane and isoflurane reduce reperfusion dysfunction in the isolated rat heart. Anesth Analg 76: 602–608PubMedGoogle Scholar
  7. 7.
    Cope DK, Impastato WK, Cohen MV, Downey JM (1997) Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 86: 699–709PubMedCrossRefGoogle Scholar
  8. 8.
    Tarnow J, Markschies Hornung A, Schulte Sasse U (1986) Isoflurane improves the tolerance to pacing-induced myocardial ischemia. Anesthesiology 64: 147–156PubMedCrossRefGoogle Scholar
  9. 9.
    Takahata 0, Ichihara K, Ogawa H (1995) Effects of sevoflurane on ischaemic myocardium in dogs. Acta Anaesthesiol Scand 39: 449–456PubMedCrossRefGoogle Scholar
  10. 10.
    Oguchi T, Kashimoto S, Yamaguchi T, Nakamura T, Kumazawa T (1995) Comparative effects of halothane, enflurane, isoflurane, and sevoflurane on function and metabolism in the ischaemic rat heart. Br J Anaesth 74: 569–575PubMedCrossRefGoogle Scholar
  11. 11.
    Pagel PS, Hettrick DA, Lowe D, Tessmer JP, Warltier DC (1995) Desflurane and isoflurane exert modest beneficial actions on left ventricular diastolic function during myocardial ischemia in dogs. Anesthesiology 83: 1021–1035PubMedCrossRefGoogle Scholar
  12. 12.
    Takahata O, Ichihara K, Abiko Y, Ogawa H (1998) Sevoflurane preserves endocardial blood flow during coronary ligation in dogs: comparison with adenosine. Acta Anaesthesiol Scand 42: 225–231PubMedCrossRefGoogle Scholar
  13. 13.
    Kersten JR, Schmeling T, Tessmer J, Hettrick DA, Pagel PS, Warltier DC (1999) Sevoflurane selectively increases coronary collateral blood flow independent of KATP channels in vivo. Anesthesiology 90: 246–256PubMedCrossRefGoogle Scholar
  14. 14.
    Rosenkranz ER, Buckberg GD (1983) Myocardial protection during surgical coronary re-perfusion. J Am Coll Cardiol 1: 1235–1246PubMedCrossRefGoogle Scholar
  15. 15.
    Braunwald E, Kloner RA (1982) The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66: 1146–1149Google Scholar
  16. 16.
    Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. J Mol Cell Cardiol 5: 395–407Google Scholar
  17. 17.
    Siegmund B, Ladilov Y, Piper HM (1994) Importance of Na+ for the recovery of CaZ+ control in reoxygenated cardiomyocytes. Am J Physiol 267:HSO6–H513Google Scholar
  18. 18.
    Siegmund B, Schlüter KD, Piper HM (1993) Calcium and the oxygen paradox. Cardiovasc Res 27: 1778–1783PubMedCrossRefGoogle Scholar
  19. 19.
    Siegmund B, Koop A, Klietz T, Schwartz P, Piper HM (1990) Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol 258: H285 - H291PubMedGoogle Scholar
  20. 20.
    Schlack W, Hollmann M, Stunneck J, Thämer V (1996) Effect of halothane on myocardial reoxygenation injury in the isolated rat heart. Br J Anaesth 76: 860–867PubMedCrossRefGoogle Scholar
  21. 21.
    Schlack W, Preckel B, Stunneck D, Thämer V (1998) Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth 81: 913–919PubMedCrossRefGoogle Scholar
  22. 22.
    Preckel B, Schlack W, Thämer V (1998) Enflurane and isoflurane, but not halothane, protect against myocardial reperfusion injury after cardioplegic arrest with HTK solution in the isolated rat heart. Anesth Analg 87: 1221–1227PubMedGoogle Scholar
  23. 23.
    Preckel B, Thämer V, Schlack W (1999) Beneficial effects of sevoflurane and desflurane against myocardial reperfusion injury after cardioplegic arrest. Can J Anaesth 46: 10761081Google Scholar
  24. 24.
    Haworth RA, Goknur AB (1995) Inhibition of sodium/calcium exchange and calcium channels of heart cells by volatile anesthetics. Anesthesiology 82: 1255–1265PubMedCrossRefGoogle Scholar
  25. 25.
    Komai H, Rusy BF (1990) Direct effect of halothane and isoflurane on the function of the sarcoplasmic reticulum. Anesthesiology 72: 694–698PubMedCrossRefGoogle Scholar
  26. 26.
    Lynch C, III, Frazer MJ (1994) Anesthetic alterations of ryanodine binding by cardiac calcium release channels. Biochim Biophys Acta 1194: 109–117PubMedCrossRefGoogle Scholar
  27. 27.
    Blanck TJJ, Thompson M (1981) Calcium transport by cardiac sarcoplasmic reticulum: modulation of halothane action by substrate concentration and pH. Anesth Analg 60: 390–394PubMedGoogle Scholar
  28. 28.
    Siegmund B, Schlack W, Ladilov YV, Balser C, Piper HM (1997) Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 96: 4372–4379PubMedCrossRefGoogle Scholar
  29. 29.
    Eskinder H, Rusch NJ, Supan FD, Kampine JP, Bosnjak ZJ (1991) The effects of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac Purkinje cells. Anesthesiology 74: 919–926PubMedCrossRefGoogle Scholar
  30. 30.
    Wheeler DM, Rice RT, DuBell WH, Spurgeon HA (1997) Initial contractile response of isolated rat heart cells to halothane, enflurane, and isoflurane. Anesthesiology 86: 137–146PubMedCrossRefGoogle Scholar
  31. 31.
    Bartunek AE, Housmans PR (2000) Effects of sevoflurane on the intracellular CaZ+ transient in ferret cardiac muscle. Anesthesiology 93: 1500–1508PubMedCrossRefGoogle Scholar
  32. 32.
    Azuma M, Matsumura C, Kemmotsu 0 (1996) The effects of sevoflurane on contractile and electrophysiologic properties in isolated guinea pig papillary muscles. Anesth Analg 82: 486–491Google Scholar
  33. 33.
    Davies LA, Gibson CN, Boyett MR, Hopkins PM, Harrison SM (2000) Effects of isoflurane, sevoflurane, and halothane on myofilament CaZ+ sensitivity and sarcoplasmic reticulum CaZ+ release in rat ventricular myocytes. Anesthesiology 93: 1034–1044PubMedCrossRefGoogle Scholar
  34. 34.
    Schlack W, Preckel B, Barthel H, Obal D, Thämer V (1997) Halothane reduces reperfusion injury after regional ischaemia in the rabbit heart in vivo. Br J Anaesth 79: 88–96PubMedCrossRefGoogle Scholar
  35. 35.
    Preckel B, Schlack W, Comfere T, Obal D, Barthel H, Thämer V (1998) Effects of enflurane, isoflurane, sevoflurane and deflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth 81: 905–912PubMedCrossRefGoogle Scholar
  36. 36.
    Mullane KM, Young M (1992) The contribution of neutrophil activation and changes in endothelial function to myocardial ischemia-reperfusion injury. In: Yellon DM, Jennings RB (eds) The Pathophysiology of Reperfusion and Reperfusion injury. Raven Press, New York, pp 59–83Google Scholar
  37. 37.
    Heindl B, Reichle FM, Zahler S, Conzen PF, Becker BF (1999) Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology 91: 521–530PubMedCrossRefGoogle Scholar
  38. 38.
    Kowalski C, Zahler S, Becker BF, et al (1997) Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesthesiology 86: 188–195PubMedCrossRefGoogle Scholar
  39. 39.
    Glantz L, Ginosar Y, Chevion M, et al (1997) Halothane prevents postischemic production of hydroxyl radicals in the canine heart. Anesthesiology 86: 440–447PubMedCrossRefGoogle Scholar
  40. 40.
    Nakamura T, Kashimoto S, Oguchi T, Kumazawa T (1999) Hydroxyl radical formation during inhalation anesthesia in the reperfused working rat heart. Can J Anaesth 46: 470–475PubMedCrossRefGoogle Scholar
  41. 41.
    Heindl B, Conzen PF, Becker BF (1999) The volatile anesthetic sevoflurane mitigates cardiodepressive effects of platelets in reperfused hearts. Basic Res Cardiol 94: 102–111PubMedCrossRefGoogle Scholar
  42. 42.
    Preckel B, Müllenheim J, Moloschavij A, Thämer V, Schlack W (2000) Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo. Anesth Analg 91: 1327–1332PubMedCrossRefGoogle Scholar
  43. 43.
    Obal D, Preckel B, Scharbatke H, et al (2001) One MAC of sevoflurane provides protection against reperfusion injury in the rat heart in vivo. Br J Anaesth 87: 900–906CrossRefGoogle Scholar
  44. 44.
    Obal D, Scharbatke H, Preckel B, et al (2001) Effect of time and concentration of sevoflurane administration on protection against myocardial reperfusion injury in rats in vivo. Pflügers Arch 441 (Suppl 2):P31–8 (Abst)Google Scholar
  45. 45.
    Kokita N, Hara A (1996) Propofol attenuates hydrogen peroxide-induced mechanical and metabolic derangements in the isolated rat heart. Anesthesiology 84: 117–127PubMedCrossRefGoogle Scholar
  46. 46.
    Puttick RM, Terrar DA (1993) Differential effects of propofol and enflurane on contractions dependent on calcium derived from the sarcoplasmic reticulum of guinea pig isolated papillary muscles. Anesth Analg 77: 55–60PubMedCrossRefGoogle Scholar
  47. 47.
    Ross S, Munoz H, Piriou V, Ryder WA, Foëx P (1998) A comparison of the effects of fentanyl and propofol on left ventricular contractility during myocardial stunning. Acta Anaesthesiol Scand 42: 23–31PubMedCrossRefGoogle Scholar
  48. 48.
    Ebel D, Schlack W, Comfère T, Preckel B, Thämer V (1999) Effect of propofol on reperfusion injury after regional ischaemia in the isolated rat heart. Br J Anaesth 83: 903–908PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • B. Preckel
  • W. Schlack

There are no affiliations available

Personalised recommendations