The Immunomodulatory Effects of Anesthetic and Analgesic Agents

  • C. Kummer
  • E. S. Netto
  • J. C. Marshall


Anesthetic and sedative agents are among the most commonly used medications in critically ill patients. They alleviate pain and anxiety, and facilitate intensive care unit (ICU) care by rendering tolerable interventions that would otherwise be akin to torture — mechanical ventilation, dressing changes, cardioversion, and invasive procedures such as line insertion or bronchoscopy, to name a few. These agents modulate the function of the central and peripheral nervous systems. However they have effects on other organs that are often unanticipated, and occasionally profound.


Opioid Receptor Immunomodulatory Effect Respiratory Burst Corticotropin Release Hormone Analgesic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haverkos HW, Lange RW (1990) Serious infections other than human immunodeficiency virus among intravenous drug users. J Infect Dis 161: 894–902PubMedCrossRefGoogle Scholar
  2. 2.
    Stevenson GW, Hall SC, Rudnick S, Seleny FL, Stevenson HC (1990) The effect of anesthetic agents on the human immune response. Anesthesiology 72: 542–552PubMedCrossRefGoogle Scholar
  3. 3.
    Stefano GB, Scharrer B, Smith EM, et al (1996) Opioid and opiate immunoregulatory processes. Crit Rev Immunol 16: 109–144PubMedCrossRefGoogle Scholar
  4. 4.
    Cabot PJ (2001) Immune-derived opioids and peripheral antinociception. Clin Exp Pharmacol Physiol 28: 230–232PubMedCrossRefGoogle Scholar
  5. 5.
    Wybran J, Appelboom T, Famaey J, Govaerts A (1979) Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T-lymphocytes. J Immunol 123: 1068–1070PubMedGoogle Scholar
  6. 6.
    Chuang LF, Chuang TK, Killiam KF, et al (1995) Expression of kappa opioid receptors in human and monkey lymphocytes. Biochem Biophys Res Commun 209: 1003–1010PubMedCrossRefGoogle Scholar
  7. 7.
    Sharp BM, Roy S, Bidlack JM (1998) Evidence for opioid receptors on cells involved in host defense and the immune system. J Neuroimmunol 83: 45–56PubMedCrossRefGoogle Scholar
  8. 8.
    Jaeger K, Scheinichen D, Heine J, et al (1998) Remifentanil, fentanyl and alfentanil have no effect on the respiratory burst of neutrophils in vitro. Acta Anaesth Scand 42: 1110–1113PubMedCrossRefGoogle Scholar
  9. 9.
    Krumholz W, Demel C, Jung S, Meuthen G, Hempelmann G (1993) The influence of fentanyl and alfentanil on functions of human polymorphonuclear leukocytes in vitro. Acta Anaesth Scand 37: 386–389PubMedCrossRefGoogle Scholar
  10. 10.
    Stefano GB, Hartman A, Bilfinger TV, et al (1995) Presence of the µ3 opiate receptor in endothelial cells: coupling to nitric oxide production and vasodilation. J Biol Chem 270: 30 290–30 293Google Scholar
  11. 11.
    Welters ID, Mezenbach A, Goumon Y, et al (2000) Morphine inhibits NF-xb nuclear binding in human neutrophils and monocytes by a nitric oxide-dependent mechanism. Anesthesiology 92: 1677–1684PubMedCrossRefGoogle Scholar
  12. 12.
    Stefano GB, Scharrer B (1994) Endogenous morphine and related opiates, a new class of chemical messengers. Adv Neuroimmunol 4: 57–67PubMedCrossRefGoogle Scholar
  13. 13.
    Nelson JC, Schneider GM, Lysle DT (2000) Involvement of central du-, but not d-or xopioid receptors in immunomodulation. Brain Behav Immunity 14: 170–184CrossRefGoogle Scholar
  14. 14.
    Marcoli M, Ricevuti G, Mazzone A, Bekkering M, Lecchini S, Frigo GM (1988) Opioid-induced modification of granulocyte function. Int J Immunopharmacol 10: 425–433PubMedCrossRefGoogle Scholar
  15. 15.
    Ni X, Gritman KR, Eisenstein TK, Adler MW, Arforks KE, Tuma RF (2000) Morphine attenuates leukocytes/endothelial interactions. Microvasc Res 60: 121–130PubMedCrossRefGoogle Scholar
  16. 16.
    Rud B, Benestad HB, Opdahl H (1988) Dual effect of thiopentone on human granulocyte activation. Non-intervention by ketamine and morphine. Acta Anaesthesiol Scand 32: 316–322Google Scholar
  17. 17.
    Luza J (1992) Effect of morphine on phagocytic activity of the polymorphonuclears and monocytes. Acta Univ Palacki Olomuc Fac Me 134: 47–57Google Scholar
  18. 18.
    Rojavin M, Szabo I, Bussiere J, et al (1993) Morphine treatment in vitro or in vivo decreases phagocytic functions of murine macrophages. Life Sci 53: 997–1006PubMedCrossRefGoogle Scholar
  19. 19.
    Pacifi R, Di Carlo S, Bacosi A, Zuccaro P (1993) Macrophage functions in drugs of abuse-treated mice. Int J Immunopharmacol 15: 711–716CrossRefGoogle Scholar
  20. 20.
    Grimm MC, Ben-Baruch A, Taub DD, et al (1998) Opiates transdeactivate chemokine receptors: delta and mu opiate-receptor mediated heterologous desensitization. J Exp Med 188: 317–325PubMedCrossRefGoogle Scholar
  21. 21.
    Eisenstein TK, Meissler JJ, Rogers TJ, Geller EB, Adler MW (1995) Mouse strain differences in immunosuppression by opioids in vitro. J Pharmacol Exp Ther 275: 1484–1489PubMedGoogle Scholar
  22. 22.
    Govitaprong P, Suttitum T, Kotchabhakdi N, Uneklabh T (1998) Alteration of immune functions in heroin addicts and heroin withdrawal subjects. J Pharmacol Exp Ther 286: 883–889Google Scholar
  23. 23.
    Lockwood LL, Silber LH, Fleshner M, Laudenslager ML, Watkins LR, Maier SF (1994) Morphine-induced decreases in in vivo antibody responses. Brain Behav Immunol 8: 24–36CrossRefGoogle Scholar
  24. 24.
    Peterson PK, Molitor TW, Chao CC (1998) The opioid-cytokine connection. J Neuroimmunol 83: 63–69PubMedCrossRefGoogle Scholar
  25. 25.
    Alicea C, Belkowski SM, Eisenstein TK, Adler MW, Rogers TJ (1996) Inhibition of primary murine macrophage cytokine production in vitro following treatment with the x-opioid agonist U50,488H. J Neuroimmunol 64: 83–90PubMedCrossRefGoogle Scholar
  26. 26.
    Chao CC, Gekker G, Sheng WS, Tsang M, Peterson PK (1994) Priming effect of morphine on the production of tumor necrosis factor-a by microglia: implications in respiratory burst of activity and human immunodeficiency virus-1 expression. J Pharmacol Exp Ther 269: 198–203PubMedGoogle Scholar
  27. 27.
    Roy S, Cain KJ, Chapin RB, Charboneau RG (1998) Morphine modulates NF-KB activation in macrophages. Biochem Biophys Res Commun 245: 392–396PubMedCrossRefGoogle Scholar
  28. 28.
    Chao CC, Hu S, Molitor TW (1992) Morphine potentiates transforming growth factor-fi release from human peripheral blood mononuclear cell cultures. J Pharmacol Exp Ther 262: 19–28PubMedGoogle Scholar
  29. 29.
    Miyagi T, Chuang LF, Doi RH, Carlos MP, Torres JV, Chuang RY (2000) Morphine induces gene expression of CCR5 in human CEM x174 lymphocytes. J Biol Chem 275: 31305–31310PubMedCrossRefGoogle Scholar
  30. 30.
    Hilburger ME, Aldler MW, Roger TJ, Eisenstein TK (1997) Morphine alters macrophage and lymphocyte populations in the spleen and peritoneal cavity. J Neuroimmunol 80: 106–114PubMedCrossRefGoogle Scholar
  31. 31.
    Singhal PC, Reddy K, Franki N, Sanwal V, Gibbons N (1997) Morphine induces splenocyte apoptosis and enhanced mRNA expression of cathepsin-B. Inflammation 21: 609–617PubMedCrossRefGoogle Scholar
  32. 32.
    Singhai PC, Sharma P, Kapase A (1998) Morphine enhances macrophage apoptosis. J Immunol 160: 1886–1893Google Scholar
  33. 33.
    Singhai PC, Kapasi AA, Franki N, Reddy K (2000) Morphine-induced macrophage apoptosis: the role of transforming growth factor-beta. Immunology 100: 57–62CrossRefGoogle Scholar
  34. 34.
    Weiss M, Birkhahn A, Krone M, Schneider EM (1996) Do etomidate and propofol influence oxygen radical production of neutrophils? Immunopharmacol Immunotoxicol 18: 291–307PubMedCrossRefGoogle Scholar
  35. 35.
    Mikawa K, Akamatsu H, Nishina K, et al (1998) Propofol inhibits human neutrophil functions. Anesth Analg 87: 695–700PubMedGoogle Scholar
  36. 36.
    Heine J, Jaeger K, Weingaertner N, Scheinichen D, Marx G, Piepenbrock S (2001) Effects of different preparation of propofol, diazepam, and etomidate on human neutrophils in vitro. Acta Anaesth Scand 45: 213–220PubMedCrossRefGoogle Scholar
  37. 37.
    Davidson JA, Boom SJ, Pearsall FJ, Shang P, Ramsay G (1995) Comparison of the effects of four i.v. anaesthetic agents on polymorphonuclear leukocyte function. Br J Anaesth 74: 315–318PubMedCrossRefGoogle Scholar
  38. 38.
    Galley HF, Dubbles AM, Webster NR (1998) The effect of midazolam and propofol on interleukin-8 from human polymorphonuclear leukocytes. Anesth Analg 86: 1289–1293PubMedGoogle Scholar
  39. 39.
    Heine J, Jaeger K, Osthaus A, et al (2000) Anaesthesia with propofol decreases FMLPinduced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br J Anaesth 85: 424–430PubMedCrossRefGoogle Scholar
  40. 40.
    Larsen B, Hoff G, Wilhelm W, Buchinger H, Wanner GA, Bauer M (1998) Effect of intravenous anesthetics on spontaneous and endotoxin-stimulated cytokine response in cultured human whole blood. Anesthesiology 89: 1218–1227PubMedCrossRefGoogle Scholar
  41. 41.
    Heine J, Scheinichen D, Jaeger K, André M, Leuwer M (1999) In vitro influence of parenteral lipid emulsions on the respiratory burst of neutrophils. Nutrition 15: 540–545PubMedCrossRefGoogle Scholar
  42. 42.
    Nagata T, Kansha M, Irita K, Takahashi S (2001) Propofol inhibits FMLP-stimulated phosphorylation of p42 mitogen-activated protein kinase and chemotaxis in human neutrophils. Br J Anesth 86: 853–858CrossRefGoogle Scholar
  43. 43.
    Gavish M, Bachman I, Shoukrun R, et al (1999) Enigma of the peripheral benzodiazepine receptor. Pharm Rev 51: 629–650PubMedGoogle Scholar
  44. 44.
    Zavala F (1997) Benzodiazepines, anxiety and immunity. Pharmacol Ther 75: 199–216PubMedCrossRefGoogle Scholar
  45. 45.
    Barbaccia ML, Berkovich A, Guarnieri P, Slobodyansky E (1990) DBI (diazepam binding inhibitor): the precursor of a family of endogenous modulators of GABAa receptor function: history, perspectives, and clinical implications. Neurochem Res 15: 161–168PubMedCrossRefGoogle Scholar
  46. 46.
    Consentino M, Marino F, Cattaneo S, et al (2000) Diazepam-binding inhibitor-derived peptides induce intracellular calcium changes and modulate human neutrophil function. J Leuk Biol 67: 637–643Google Scholar
  47. 47.
    Taupin V, Gogusev J, Descamps-Latscha B, Zavala F (1993) Modulation of tumor necrosis factor-a, interleukin-1/3, interleukin-6, interleukin-8 and granulocyte/macrophage colony-stimulating factor expression in human monocytes by an endogenous anxiogenic benzodiazepine ligand, triakontatetraneuropeptide evidence for a role of prostaglandins. Mol Pharmacol 43: 64–69PubMedGoogle Scholar
  48. 48.
    Cahard D, Canat X, Carayon P, Roque C, Casellas P, Le Fur G (1994) Subcellular localization of peripheral benzodiazepine receptors on human leukocytes. Lab Invest. 70: 23–28PubMedGoogle Scholar
  49. 49.
    Woods MJ, Williams DC (1996) Multiple forms and location for the peripheral-type benzodiazepine receptor. Biochem Pharmacol 52: 1805–1814PubMedCrossRefGoogle Scholar
  50. 50.
    Zavala F, Taupin V, Descamps-Latscha B (1990) In vivo treatment with benzodiazepines inhibits murine phagocyte oxidative metabolism and production of interleukin-1, tumor necrosis factor and interleukin-6. J Pharm Exp Ther 255: 442–450Google Scholar
  51. 51.
    Finnerty M, Marczynski TJ, Amirault HJ, Urbancic M, Andersen BR (1991) Benzodiazepines inhibit neutrophil chemotaxis and superoxide production in a stimulus dependent manner, PK-11195 antagonizes these effects. Immunopharmacol 22: 185–193CrossRefGoogle Scholar
  52. 52.
    Covelli W, Decandia P, Altamura M, Jirillo E (1989) Diazepam inhibits phagocytosis and killing exerted by polymorphonuclear cells and monocytes from healthy donors. In vitro studies. Immunopharmacol Immunotoxicol 11: 701–714Google Scholar
  53. 53.
    Inada T, Taniuchi S, Shingu K, Kobayashi Y, Fujisawa J, Nakao S (2001) Propofol depressed neutrophil hydrogen peroxide production more than midazolam, whereas adhesion molecule expression was minimally affected by both anesthetics in rats with abdominal sepsis. Anesth Analg 92: 437–441PubMedCrossRefGoogle Scholar
  54. 54.
    Heller A, Heller S, Blecken S, Urbaschek R, Koch T (1998) Effects of intravenous anesthetics on bacterial elimination in human blood in vitro. Acta Anaesthesiol Scand 42: 518–526PubMedCrossRefGoogle Scholar
  55. 55.
    Szekely A, Heindl B, Zahler S, Conzen PF, Becker BF (2000) Nonuniform behavior of intravenous anesthetics on postischemic adhesion of neutrophils in the guinea pig heart. Anesth Analg 90: 1293–1300PubMedCrossRefGoogle Scholar
  56. 56.
    Ruff MR, Pert CB, Weber RJ, Wahl LM, Wahl SM, Paul SM (1985) Benzodiazepine receptor-mediated chemotaxis of human monocytes. Science 229: 1281–1283PubMedCrossRefGoogle Scholar
  57. 57.
    Krumholz W, Reussner D, Hempelmann G (1999) The influence of several intravenous anaesthetics on the chemotaxis of human monocytes in vitro. Eur J Anaesthesiol 16: 547549Google Scholar
  58. 58.
    Marino F, Cattaneo S, Cosentino M, et al (2001) Diazepam stimulates migration and phagocytosis of human neutrophils: possible contribution of peripheral type benzodiazepine receptors and intracellular calcium. Pharmacology 63: 42–49PubMedCrossRefGoogle Scholar
  59. 59.
    Schlumpf M, Lichtensteiger W, Ramseier H (1993) Diazepam treatment of pregnant rats differentially affects interleukin-1 and interleukin-2 secretion in their offspring during different phases of postnatal development. Pharmacol Toxicol 73: 335–340PubMedCrossRefGoogle Scholar
  60. 60.
    Oh YJ, Francis JW, Markelonis GJ, Oh TH (1992) Interleukin-lß and tumor necrosis factor-a increase peripheral-type benzodiazepine binding sites in cultured polygonal astrocytes. J Neurochem 58: 2131–2138PubMedCrossRefGoogle Scholar
  61. 61.
    Galdiero F, Bentivoglio C, Nuzzo I, et al (1995) Effects of benzodiazepines and resistance in mice. Life Sci 57: 2413–2423PubMedCrossRefGoogle Scholar
  62. 62.
    Salo M, Pirttikangas C-0, Pulkki K (1997) Effects of propofol emulsion and thiopentone on T helper type-1/type-2 balance in vitro. Anaesthesia 52: 341–344PubMedCrossRefGoogle Scholar
  63. 63.
    Nishina K, Akamatsu H, Mikakawa K, et al (1998) The inhibitory effects of thiopental, midazolan and ketamine on human neutrophil functions. Anesth Analg 86: 159–165PubMedGoogle Scholar
  64. 64.
    Swanton BJ, Iohom G, Wang JH, Redmond HP, Shorten GD (2001) The effect of lidocaine on neutrophil respiratory burst during induction of general anaesthesia and tracheal intubation. Eur J Anaesth 18: 524–529Google Scholar
  65. 65.
    Hofbauer R, Moser D, Salfinger H, Frass M, Kapiotis S (1998) Thiopental inhibits migration of human leukocytes through human endothelial cell monolayers in vitro. Intensive Care Med 24: 973–976PubMedCrossRefGoogle Scholar
  66. 66.
    Galley HF, DiMatteo MA, Webster NR (2000) Immunomodulation by anaesthetic, sedative and analgesic agents: does it matter? Intensive Care Med 26: 267–274PubMedCrossRefGoogle Scholar
  67. 67.
    Schalen W, Messeter K, Nordstrom C-H (1992) Complications and side effects during thiopentone therapy in patients with severe head injuries. Acta Anaesth Scand 36: 369–377PubMedCrossRefGoogle Scholar
  68. 68.
    Stover JF, Stocker R (1998) Barbiturate coma may promote reversible bone marrow suppression in patients with severe isolated traumatic brain injury. Eur J Clin Pharmacol 54: 529–534PubMedCrossRefGoogle Scholar
  69. 69.
    Ishikawa K, Tanaka H, Shiozaki T, et al (2000) Characteristics of infection and leukocyte count in severely head-injured patients treated with mild hypothermia. J Trauma 49: 912922Google Scholar
  70. 70.
    Martinsson T, Oda T, Fernvik E, Roempke K, Dalsgaard C, Svensjo E (1997) Ropivacaine inhibits leukocyte rolling, adhesion and CD11b/CD18 expression. J Pharm Exp Ther 283: 59–65Google Scholar
  71. 71.
    Schmidt W, Schmidt H, Bauer H, Gebhard MM, Martin E (1997) Influence of lidocaine on endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Anaesthesiology 87: 617–624CrossRefGoogle Scholar
  72. 72.
    Azuma Y, Shinohara M, Wang P, Suese Y, Yasuda H, Ohura K (2000) Comparison of inhibitory effects of local anesthetics on immune functions of neutrophils. Int J Immunopharm 22: 789–796CrossRefGoogle Scholar
  73. 73.
    Welters ID, Menzebach A, Langefeld TW, Menzebach M, Hempelmann G (2001) Inhibitory effects of S-(-) and R-(+) bupivacaine on neutrophil function. Acta Anaesth Scand 45: 570–575PubMedCrossRefGoogle Scholar
  74. 74.
    Hammer R, Dahlgren C, Stendahl O (1985) Inhibition of human leukocyte metabolism and random mobility by local anaesthesia. Acta Anaesth Scand 29: 520–523PubMedCrossRefGoogle Scholar
  75. 75.
    Hollman MW, Gross A, Jelacin N, Duriex ME (2001) Local anesthetic effects on priming and activation of human neutrophils. Anesthesiology 95: 113–122CrossRefGoogle Scholar
  76. 76.
    Takao Y, Mikawa K, Nishina K, Maekawa N, Obara H (1996) Lidocaine attenuates hyperoxic lung injury in rabbits. Acta Anaesth Scand 40: 318–325PubMedCrossRefGoogle Scholar
  77. 77.
    Kiyonar Y, Nishina K, Mikawa K, Maekawa N, Obara H (2000) Lidocaine attenuates acute lung injury induced by a combination of phospholipase A2 and trypsin. Crit Care Med 28: 484–489CrossRefGoogle Scholar
  78. 78.
    Nishina K, Mikawa K, Takao Y, Shiga M, Maekawa N, Obara H (1998) Intravenous lidocaine attenuates acute lung injury induced by hydrochloric acid aspiration in rabbits. Anesthesiology 88: 1300–1309PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • C. Kummer
  • E. S. Netto
  • J. C. Marshall

There are no affiliations available

Personalised recommendations