Vasopressin and Hypothalamic-Pituitary-Adrenal Axis Relationships

  • F. Lauzier
  • N. Gallo-Payet
  • O. Lesur
Conference paper


The relationship between vasopressin and the hypothalamo-pituitary-adrenal (HPA) axis has been established for many years, one that occurs at almost every level of the HPA axis, as described in a recent review [1]. Unfortunately, few clinical implications have been drawn from this finding, until now. Many fundamental studies have demonstrated the complexities of these physiological interactions. In an era of renewed interest for vasopressin and corticosteroid supportive therapies in sepsis [2, 3], the time has come for critical care specialists to gain better insight into how these two important hormonal systems interact together in physiological conditions. The present chapter is aimed at extrapolating this knowledge to septic settings and targeting specific queries and areas of future research.


Corticotropin Release Factor ACTH Level Corticotropin Release Hormone ACTH Secretion Zona Glomerulosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viau V (2002) Functional cross-talk between the hypothalamic-pituitary-gonadal and adrenal axes. J Neuroendocrinol 14: 506–513PubMedCrossRefGoogle Scholar
  2. 2.
    Annane D, Sebille V, Charpentier C, et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871PubMedCrossRefGoogle Scholar
  3. 3.
    Holmes CL, Patel BM, Russell JA, Walley KR (2001) Physiology of vasopressin relevant to management of septic shock. Chest 120: 989–1002PubMedCrossRefGoogle Scholar
  4. 4.
    Baertschi AJ (1980) Portal vascular route from hypophysial stalk/neural lobe to adenohypophysis. Am J Physiol 239: R463–469PubMedGoogle Scholar
  5. 5.
    Barberis C, Mouillac B, Durroux T (1998) Structural bases of vasopressin/oxytocin receptor function. J Endocrinol 156: 223–299PubMedCrossRefGoogle Scholar
  6. 6.
    Grazzini E, Boccara G, Joubert D, et al (1998) Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes. Adv Exp Med Biol 449: 325–334PubMedCrossRefGoogle Scholar
  7. 7.
    Raff H, Skelton MM, Merrill DC, Cowley AW Jr (1986) Vasopressin responses to corticotropin releasing factor and hyperosmolality in conscious dogs. Am J Physiol 251: R1235–1239PubMedGoogle Scholar
  8. 8.
    Klingbeil CK, Keil LC, Chang D, Reid IA (1988) Effects of CRF and ANG II on ACTH and vasopressin release in conscious dogs. Am J Physiol 255: E46 - E53PubMedGoogle Scholar
  9. 9.
    Yamada K, Tamura Y, Yoshida S (1989) Effect of administration of corticotropin-releasing hormone and glucocorticoid on arginine vasopressin response to osmotic stimulus in normal subjects and patients with hypocorticotropinism without overt diabetes insipidus. J Clin Endocrinol Metab 69: 396–401PubMedCrossRefGoogle Scholar
  10. 10.
    Sawchenko PE, Arias C (1995) Evidence for short-loop feedback effects of ACTH on CRF and vasopressin expression in parvocellular neurosecretory neurons. J Neuroendocrinol 7: 721–731PubMedCrossRefGoogle Scholar
  11. 11.
    Sklar AH, Schrier RW (1983) Central nervous system mediators of vasopressin release. Physiol Rev 63: 1243–1280PubMedGoogle Scholar
  12. 12.
    Qadri F, Waldmann T, Wolf A, Hohle S, Rascher W, Unger T (1998) Differential contribution of angiotensinergic and cholinergic receptors in the hypothalamic paraventricular nucleus to osmotically induced AVP release. J Pharmacol Exp Therap 285: 1012–1018Google Scholar
  13. 13.
    Conaglen JV, Donald RA, Espiner EA, Livesey JH, Nicholls MG (1984) The effect of ovine corticotropin-releasing factor on catecholamine, vasopressin, and aldosterone secretion in normal man. J Clin Endocrinol Metab 58: 463–466PubMedCrossRefGoogle Scholar
  14. 14.
    Arima H, Aguilera G (2000) Vasopressin and oxytocin neurones of hypothalamic supraoptic and paraventricular nuclei co-express mRNA for Type-1 and Type-2 corticotropin-releasing hormone receptors. J Neuroendocrinol 12: 833–842PubMedCrossRefGoogle Scholar
  15. 15.
    Papanek PE, Sladek CD, Raff H (1997) Corticosterone inhibition of osmotically stimulated vasopressin from hypothalamic-neurohypophysial explants. Am J Physiol 272: R158 - R162PubMedGoogle Scholar
  16. 16.
    Aguilera G, Rabadan-Diehl C (2000) Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept 96: 23–29PubMedCrossRefGoogle Scholar
  17. 17.
    Muller MB, Landgraf R, Preil J, et al (2000) Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotropin-releasing hormone receptor 1 is dependent on glucocorticoids. Endocrinology 141: 4262–4269PubMedCrossRefGoogle Scholar
  18. 18.
    Papanek PE, Raff H (1994) Physiological increases in cortisol inhibit basal vasopressin release in conscious dogs. Am J Physiol 266: R1744 - R1751PubMedGoogle Scholar
  19. 19.
    Papanek PE, Raff H (1994) Chronic physiological increases in cortisol inhibit the vasopressin response to hypertonicity in conscious dogs. Am J Physiol 267: R1342 - R1349PubMedGoogle Scholar
  20. 20.
    Raff H, Skelton MM, Cowley AW Jr (1990) Cortisol inhibition of vasopressin and ACTH responses to arterial hypotension in conscious dogs. Am J Physiol 258: R64 - R69PubMedGoogle Scholar
  21. 21.
    Oelkers W (1989) Hyponatremia and inappropriate secretion of vasopressin (antidiuretic hormone) in patients with hypopituitarism. N Engl J Med 321: 492–496PubMedCrossRefGoogle Scholar
  22. 22.
    Dingman JF, Despointes RH (1960) Adrenal steroid inhibition of vasopresin release from the neurohypophysis of normal subjects and patients with Addison’s disease. J Clin Invest 39: 1851–1863PubMedCrossRefGoogle Scholar
  23. 23.
    Oelkers W, Bahr V (1987) Effects of fludrocortisone withdrawal on plasma angiotensin II, ACTH, vasopressin, and potassium in patients with Addison’s disease. Acta Endocrinol (Copenh) 115: 325–330Google Scholar
  24. 24.
    McCann SM (1957) The ACTH-releasing activity of extracts of the posterior lobe of the pituitary in vivo. Endocrinology 60: 664PubMedCrossRefGoogle Scholar
  25. 25.
    Jard S, Gaillard RC, Guillon G, et al (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30: 171–177PubMedGoogle Scholar
  26. 26.
    Sugimoto T, Saito M, Mochizuki S, et al (1994) Molecular cloning and functional expression of a cDNA encoding the human Vlb vasopressin receptor. J Biol Chem 269: 27088–27092PubMedGoogle Scholar
  27. 27.
    Liu JH, Muse K, Contreras P, et al (1983) Augmentation of ACTH-releasing activity of synthetic corticotropin releasing factor (CRF) by vasopressin in women. J Clini Endocrinol Metab 57: 1087–1089CrossRefGoogle Scholar
  28. 28.
    Hensen J, Hader O, Bahr V, Oelkers W (1988) Effects of incremental infusions of arginine vasopressin on adrenocorticotropin and cortisol secretion in man. J Clin Endocrinol Metab 66: 668–671PubMedCrossRefGoogle Scholar
  29. 29.
    Rivier C, Vale W (1983) Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305: 325–327PubMedCrossRefGoogle Scholar
  30. 30.
    Raff H, Merrill DC, Skelton MM, Brownfield MS, Cowley AW Jr (1988) Control of adrenocorticotropin secretion and adrenocortical sensitivity in neurohypophysectomized conscious dogs: effects of acute and chronic vasopressin replacement. Endocrinology 122: 1410–1418PubMedCrossRefGoogle Scholar
  31. 31.
    Raff H, Papanek PE, Liard JF, Cowley AW Jr (1994) The effect of intracarotid vasopressin infusion on ACTH release in neurohypophysectomized, conscious dogs. Am J Physiol 267: R653 - R658PubMedGoogle Scholar
  32. 32.
    Kornberger E, Prengel AW, Krismer A, et al (2000) Vasopressin-mediated adrenocorticotropin release increases plasma cortisol concentrations during cardiopulmonary resuscitation. Crit Care Med 28: 3517–3521PubMedCrossRefGoogle Scholar
  33. 33.
    Payet N, Isler H (1976) Adrenal glomerulosa mitotic stimulation by posterior pituitary hormones. Cell Tissue Res 172: 93–101PubMedCrossRefGoogle Scholar
  34. 34.
    Hilton JG, Scian LF, Westermann CD, Kruesi OR (1959) Effect of synthetic lysine vasopressin on adrenocortical secretion. Science 129: 971PubMedCrossRefGoogle Scholar
  35. 35.
    Payet N, Lehoux J (1979) A comparative study of the role of vasopressin and ACTH in the regulation of growth and function of rat adrenal glands. J Steroid Biochem 12: 461–467CrossRefGoogle Scholar
  36. 36.
    Gallo-Payet N, Guillon G (1998) Regulation of adrenocortical function by vasopressin. Horm Metab Res 30: 360–367PubMedCrossRefGoogle Scholar
  37. 37.
    Pignatelli D, Magalhaes M, Magalhaes M (1998) Direct effects of stress on adrenocortical function. Horm Metab Res 30: 464–474PubMedCrossRefGoogle Scholar
  38. 38.
    Aguilera G, Catt K (1983) Regulation of aldosterone secretion during altered sodium intake. J Steroid Biochem 19: 525–530PubMedCrossRefGoogle Scholar
  39. 39.
    Payet N, Lehoux JG (1980) A comparative study of the role of vasopressin and ACTH in the regulation of growth and function of rat adrenal glands. J Steroid Biochem 12: 461–467PubMedCrossRefGoogle Scholar
  40. 40.
    Mazzochi G, Malendowicz LK, Meneghelli V, Gottardo G, Nussdorfer GG (1995) In-vitro and in-vivo studies of the effects of arginine-vasopressin on the secretion and growth of rat adrenal cortex. Histol Histopathol 10: 359–370PubMedGoogle Scholar
  41. 41.
    Guillon G, Trueba M, Joubert D, et al (1995) Vasopressin stimulates steroid secretion in human adrenal glands: comparison with angiotensin-II effect. Endocrinology 136: 1285–1295PubMedCrossRefGoogle Scholar
  42. 42.
    Perraudin V, Delarue C, Lefebvre H, Contesse V, Kuhn JM, Vaudry H (1993) Vasopressin stimulates cortisol secretion from human adrenocortical tissue through activation of VI receptors. J Clin Endocrinol Metab 76: 1522–1528PubMedCrossRefGoogle Scholar
  43. 43.
    Gallo-Payet N, Guillon G, Balestre MN, Jard S (1986) Vasopressin induces breakdown of membrane phosphoinositides in adrenal glomerulosa and fasciculata cells. Endocrinology 119: 1042–1047PubMedCrossRefGoogle Scholar
  44. 44.
    Brooks VL, Keil LC (1992) Vasopressin and angiotensin II in reflex regulation of ACTH, glucocorticoids, and renin: effect of water deprivation. Am J Physiol 263: R762 - R769PubMedGoogle Scholar
  45. 45.
    Raff H, Merrill D, Skelton M, Cowley AW Jr (1985) Control of ACTH and vasopressin in neurohypophysectomized conscious dogs. Am J Physiol 249: R281–284PubMedGoogle Scholar
  46. 46.
    Brooks VL, Blakemore LJ (1989) Vasopressin: a regulator of adrenal glucocorticoid production? Am J Physiol 256: E566 - E752PubMedGoogle Scholar
  47. 47.
    Fukata J, Usui T, Tsukada T, et al (1990) Effects of repetitive administration of corticotropin-releasing hormone combined with lysine vasopressin on plasma adrenocorticotropin and cortisol levels in secondary adrenocortical insufficiency. J Clin Endocrinol Metab 71: 1624–1631PubMedCrossRefGoogle Scholar
  48. 48.
    Bahr V, Hensen J, Hader O, Bolke T, Oelkers W (1991) Stimulation of steroid secretion by adrenocorticotropin injections and by arginine vasopressin infusions: no evidence for a direct stimulation of the human adrenal by arginine vasopressin. Acta Endocrinol (Copenh) 125: 348–353Google Scholar
  49. 49.
    Grazzini E, Lodboerer AM, Perez-Martin A, Joubert D, Guillon G (1996) Molecular and functional characterization of Vlb vasopressin receptor in rat adrenal medulla. Endocrinology 137: 3906–3914PubMedCrossRefGoogle Scholar
  50. 50.
    Grazzini E, Breton C, Derick S, et al (1999) Vasopressin receptors in human adrenal medulla and pheochromocytoma. J Clin Endocrinol Metab 84: 2195–2203PubMedCrossRefGoogle Scholar
  51. 51.
    Nussdorfer GG (1996) Paracrine control of adrenal cortical function by medullary chromaffin cells. Pharmacol Rev 48: 495–530PubMedGoogle Scholar
  52. 52.
    Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E (2000) A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283: 1038–1045PubMedCrossRefGoogle Scholar
  53. 53.
    Landry DW, Levin HR, Gallant EM, et al (1997) Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95: 122–1125CrossRefGoogle Scholar
  54. 54.
    Annane D (2001) Corticosteroids for septic shock. Crit Care Med 29 (7 suppl): 5117 - S120Google Scholar
  55. 55.
    Schroeder S, Wichers M, Klingmuller D, et al (2001) The hypothalamic-pituitary-adrenal axis of patients with severe sepsis: altered response to corticotropin-releasing hormone. Crit Care Med 29: 310–316PubMedCrossRefGoogle Scholar
  56. 56.
    Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96: 576–582PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Lauzier
  • N. Gallo-Payet
  • O. Lesur

There are no affiliations available

Personalised recommendations