Glycolysis in Sepsis and other Stress Conditions

  • S. Karyampudi
  • M. Singer
Conference paper


Glycolysis is derived from the Greek words glycos, sugar (sweet), and lysis, dissolution. The glycolytic (Embden-Meyerhof) pathway is the only extra-mitochondrial process that allows the cell to directly produce usable energy in the form of ATP. Glucose (a six carbon chain molecule) is metabolized to two pyruvate (three carbon chain) molecules with a net gain of two ATP molecules. Glycolysis is, however, relatively inefficient; the yield of two molecules of ATP per molecule of glucose is approximately 5% of the potential 36–38 ATP molecules generated in total by anaerobic (glycolytic+tricarboxylic acid cycle) and aerobic (oxidative phophorylation) metabolism.


Septic Shock Ischemic Precondition Aerobic Glycolysis Glycolytic Flux Triose Phosphate Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray SM, Adams V, Yamashita Y, Le SP, Goddard-Finegold J, McCabe ER (1994) Hexokinase binding in ischemic and reperfused piglet brain. Biochem Med Metab Biol 53: 145–148PubMedCrossRefGoogle Scholar
  2. 2.
    Depre C, Rider MH, Hue L (1998) Mechanisms of control of heart glycolysis. Eur J Biochem 258: 277–290PubMedCrossRefGoogle Scholar
  3. 3.
    Liu MS, Zhang JN (1985) Glycolytic and tricarboxylic acid cycle intermediates in dog livers during endotoxic shock. Biochem Med 34: 335–343PubMedCrossRefGoogle Scholar
  4. 4.
    Marsin AS, Bertrand L, Rider MH, et al (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10: 1247–1255PubMedCrossRefGoogle Scholar
  5. 5.
    Ben Yoseph O, Camp DM, Robinson TE, Ross BD (1995) Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6–13C2,6,6–2H2]glucose and microdialysis. J Neurochem 64: 1336–1342CrossRefGoogle Scholar
  6. 6.
    Mulquiney PJ, Bubb WA, Kuchel PW (1999) Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 342: 567–580PubMedCrossRefGoogle Scholar
  7. 7.
    Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328: 1471–1477PubMedCrossRefGoogle Scholar
  8. 8.
    Albina JE, Mastrofrancesco B, Reichner JS (1999) Acyl phosphatase activity of NO-inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH): a potential mechanism for uncoupling glycolysis from ATP generation in NO-producing cells. Biochem J 341: 5–9PubMedCrossRefGoogle Scholar
  9. 9.
    Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223PubMedCrossRefGoogle Scholar
  10. 10.
    Mizock BA (2000) Metabolic derangements in sepsis and septic shock. Crit Care Clin 16: 319–336PubMedCrossRefGoogle Scholar
  11. 11.
    L’Her E, Sebert P (2001) A global approach to energy metabolism in an experimental model of sepsis. Am J Respir Crit Care Med 164: 1444–1447PubMedCrossRefGoogle Scholar
  12. 12.
    Shangraw RE, Jahoor F, Wolfe RR, Lang CH (1996) Pyruvate dehydrogenase inactivity is not responsible for sepsis-induced insulin resistance. Crit Care Med 24: 566–574PubMedCrossRefGoogle Scholar
  13. 13.
    Lang CH, Bagby GJ, Spitzer JJ (1984) Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism 33: 959–963PubMedCrossRefGoogle Scholar
  14. 14.
    Ardawi MS, Jamal YS, Ashy AA, Nasr H, Newsholme EA (1990) Glucose and glutamine metabolism in the small intestine of septic rats. J Lab Clin Med 115: 660–668PubMedGoogle Scholar
  15. 15.
    Gellerich FN, Trumbeckaite S, Hertel K, et al (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11: 336–341PubMedCrossRefGoogle Scholar
  16. 16.
    Karyampudi S, Brealey D, Stidwill R, Taylor V, Singer M (2002) The effect of sepsis on the key glycolytic enzymes in a rodent model of organ failure. Intensive Care Med 28: S96 (abst)Google Scholar
  17. 17.
    Levraut J, Ciebiera JP, Chave S, et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157: 1021–1026PubMedCrossRefGoogle Scholar
  18. 18.
    Kemper WF, Lindstedt SL, Hartzler LK, Hicks JW, Conley KE (2001) Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling. Proc Natl Acad Sci USA 98: 723–728Google Scholar
  19. 19.
    Chai J, Diao L, Sheng Z (1999) [Impact of intracellular Na+ concentration alteration on intracellular aerobic glycolysis in skeletal muscles in sepsis]. Zhonghua Yi Xue Za Zhi 79: 546–548Google Scholar
  20. 20.
    Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201: 1129–1139PubMedGoogle Scholar
  21. 21.
    Mohr S, Stamler JS, Brune B (1996) Posttranslational modification of glyceraldehyde-3phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 271: 4209–4214PubMedCrossRefGoogle Scholar
  22. 22.
    Vedia L, McDonald B, Reep B, et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929–24932Google Scholar
  23. 23.
    Albina JE, Mastrofrancesco B (1993) Modulation of glucose metabolism in macrophages by products of nitric oxide synthase. Am J Physiol 264: C1594 - C1599PubMedGoogle Scholar
  24. 24.
    Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20: 80–93PubMedCrossRefGoogle Scholar
  25. 25.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171: 221–226PubMedCrossRefGoogle Scholar
  26. 26.
    Astiz ME, Rackow EC (1998) Septic shock. Lancet 351: 1501–1505CrossRefGoogle Scholar
  27. 27.
    Vary TC (1996) Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 6: 89–94PubMedCrossRefGoogle Scholar
  28. 28.
    Jackson DC (2000) Living without oxygen: lessons from the freshwater turtle. Comp Biochem Physiol A Mol Integr Physiol 125: 299–315PubMedCrossRefGoogle Scholar
  29. 29.
    Linossier MT, Dormois D, Arsac L, et al (2000) Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiol Scand 168: 403–411PubMedCrossRefGoogle Scholar
  30. 30.
    Wolfe RR, Martini WZ (2000) Changes in intermediary metabolism in severe surgical illness. World J Surg 24: 639–647PubMedCrossRefGoogle Scholar
  31. 31.
    Murry CE, Richard VJ, Reimer KA, Jennings RB (1990) Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66: 913–931PubMedCrossRefGoogle Scholar
  32. 32.
    de Jonge R, Bradamante S, Speleman L, Willem DJ (1998) Carbohydrates and purines in underperfused hearts, protected by ischemic preconditioning. J Mol Cell Cardiol 30: 699708Google Scholar
  33. 33.
    Vuorinen K, Ylitalo K, Peuhkurinen K, Raatikainen P, Ala-Rami A, Hassinen IE (1995) Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial FIFO-ATPase. Circulation 91: 2810–2818Google Scholar
  34. 34.
    Finegan BA, Lopaschuk GD, Gandhi M, Clanachan AS (1995) Ischemic preconditioning inhibits glycolysis and proton production in isolated working rat hearts. Am J Physiol 269: H1767 - H1775PubMedGoogle Scholar
  35. 35.
    Satoh H, Sugiyama S, Nomura N, Terada H, Hayashi H (2001) Importance of glycolytically derived ATP for Na+ loading via Na+/H+ exchange during metabolic inhibition in guinea pig ventricular myocytes. Clin Sci (Lond) 101: 243–251CrossRefGoogle Scholar
  36. 36.
    Salvi S (2001) Protecting the myocardium from ischemic injury: a critical role for alpha(1)-adrenoreceptors? Chest 119: 1242–1249PubMedCrossRefGoogle Scholar
  37. 37.
    Gabel SA, Cross HR, London RE, Steenbergen C, Murphy E (1997) Decreased intracellular pH is not due to increased H+ extrusion in preconditioned rat hearts. Am J Physiol 273: H2257 - H2262PubMedGoogle Scholar
  38. 38.
    Morand C, Remesy C, Demigne C (1994) Control of lactate utilization by extracellular pH in isolated rat liver cells. Metabolism 43: 157–162PubMedCrossRefGoogle Scholar
  39. 39.
    Inoue Y, Kaneko T (1992) [Effects of pH on the endocrine system and metabolism]. Nippon Rinsho 50: 2124–2128Google Scholar
  40. 40.
    Depre C, Vanoverschelde JL, Taegtmeyer H (1999) Glucose for the heart. Circulation 99: 578–588PubMedCrossRefGoogle Scholar
  41. 41.
    Diaz R, Paolasso EA, Piegas LS, et al (1998) Metabolic modulation of acute myocardial infarction. The ECLA ( Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 98: 2227–2234Google Scholar
  42. 42.
    King LM, Opie LH (1998) Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow. Cardiovasc Res 39: 381–392PubMedCrossRefGoogle Scholar
  43. 43.
    Apstein CS (1998) Glucose-insulin-potassium for acute myocardial infarction: remarkable results from a new prospective, randomized trial. Circulation 98: 2223–2226PubMedCrossRefGoogle Scholar
  44. 44.
    Tian R, Abel ED (2001) Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 103: 2961–2966PubMedCrossRefGoogle Scholar
  45. 45.
    Feldhaus LM, Liedtke AJ (1998) mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J Mol Cell Cardiol 30: 2475–2485Google Scholar
  46. 46.
    Schaefer S, Ramasamy R (1997) Glycogen utilization and ischemic injury in the isolated rat heart. Cardiovasc Res 35: 90–98PubMedCrossRefGoogle Scholar
  47. 47.
    Swanson RA, Farrell K, Stein BA (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21: 142–153PubMedCrossRefGoogle Scholar
  48. 48.
    Mochizuki S, Neely JR (1979) Control of glyceraldehyde-3-phosphate dehydrogenase in cardiac muscle. J Mol Cell Cardiol 11: 221–236PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang J, Snyder SH (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89: 9382–9385PubMedCrossRefGoogle Scholar
  50. 50.
    Knight RJ, Kofoed KF, Schelbert HR, Buxton DB (1996) Inhibition of glyceraldehyde-3phosphate dehydrogenase in post-ischaemic myocardium. Cardiovasc Res 32: 1016–1023PubMedCrossRefGoogle Scholar
  51. 51.
    Zierath JR, Krook A, Wallberg-Henriksson H (2000) Insulin action and insulin resistance in human skeletal muscle. Diabetologia 43: 821–835PubMedCrossRefGoogle Scholar
  52. 52.
    DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30: 1000–1007Google Scholar
  53. 53.
    Song XM, Kawano Y, Krook A, et al (1999) Muscle fiber type-specific defects in insulin signal transduction to glucose transport in diabetic GK rats. Diabetes 48: 664–670PubMedCrossRefGoogle Scholar
  54. 54.
    Zierath JR, Galuska D, Nolte LA, Thorne A, Kristensen JS, Wallberg-Henriksson H (1994) Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetologia 37: 270–277PubMedCrossRefGoogle Scholar
  55. 55.
    Cave AC, Ingwall JS, Friedrich J, et al (2000) ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate. Circulation 101: 2090–2096PubMedCrossRefGoogle Scholar
  56. 56.
    Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically ill patient. N Engl J Med 345: 1359–1367PubMedCrossRefGoogle Scholar
  57. 57.
    Lazar HL (1997) Enhanced preservation of acutely ischemic myocardium and improved clinical outcomes using glucose-insulin-potassium (GIK) solutions. Am J Cardiol 80: 90A - 93APubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • S. Karyampudi
  • M. Singer

There are no affiliations available

Personalised recommendations