Advertisement

Update on Anti-Endotoxin Therapies

  • R. Stephens
  • M. Mythen
Conference paper

Abstract

Endotoxin is part of the Gram-negative bacterial cell wall and can start some of the processes that lead in the end to organ failure and death. Higher levels during critical illness, surgery and trauma have been associated with a worse outcome.

Keywords

Multiple Organ Dysfunction Syndrome Lipopolysaccharide Binding Protein Selective Digestive Decontamination Endotoxin Release Common Enterobacterial Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolke E, Jehle PM, Trautmann M, et al (2002) Different acute-phase response in newborns and infants undergoing surgery. Pediatr Res 51: 333–338PubMedCrossRefGoogle Scholar
  2. 2.
    Trautmann M, Zick R, Rukavina T, Cross AS, Marre R (1998) Antibiotic-induced release of endotoxin: in-vitro comparison of meropenem and other antibiotics. J Antimicrob Chemother 41: 163–169PubMedCrossRefGoogle Scholar
  3. 3.
    Suffredini AF, Fromm RE, Parker MM, et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287PubMedCrossRefGoogle Scholar
  4. 4.
    Bolke E, Jehle PM, Storck M, et al (2001) Endovascular stent-graft placement versus conventional open surgery in infrarenal aortic aneurysm: a prospective study on acute phase response and clinical outcome. Clin Chim Acta 314: 203–207PubMedCrossRefGoogle Scholar
  5. 5.
    Hurley JC (1995) Reappraisal with meta-analysis of bacteremia, endotoxemia, and mortality in gram-negative sepsis. J Clin Microbiol 33: 1278–1282PubMedGoogle Scholar
  6. 6.
    Pastores SM, Katz DP, Kvetan V (1996) Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. Am J Gastroenterol 91: 1697–1710PubMedGoogle Scholar
  7. 7.
    Dobrovolskaia MA, Vogel SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4: 903–914PubMedCrossRefGoogle Scholar
  8. 8.
    Verbon A, Dekkers PE, ten Hove T, et al (2001) IC14, an anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans. J Immunology 166: 3599–3605Google Scholar
  9. 9.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394–397PubMedCrossRefGoogle Scholar
  10. 10.
    Mancek M, Pristovsek P, Jerala R (2002) Identification of LPS-binding peptide fragment of MD-2, a toll-receptor accessory protein. Biochem Biophys Res Commun 292: 880–885PubMedCrossRefGoogle Scholar
  11. 11.
    Lorenz EP, Mira JPMD, Frees KL, Schwartz DAMD (2002) Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch Intern Med 162: 10281032Google Scholar
  12. 12.
    Svanborg C, Frendeus B, Godaly G, et al (2001) Toll-like receptor signaling and chemokine receptor expression influence the severity of urinary tract infection. J Infect Dis 183: S61 - S65PubMedCrossRefGoogle Scholar
  13. 13.
    Bjerre A, Brusletto B, Mollnes TE, et al (2002) Complement activation induced by purified Neisseria meningitidis lipopolysaccharide ( LPS), outer membrane vesicles, whole bacteria, and an LPS-free mutant. J Infect Dis 185: 220–228Google Scholar
  14. 14.
    Kiechl S, Lorenz E, Reindl M, et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347: 185–192PubMedCrossRefGoogle Scholar
  15. 15.
    Ziegler EJ, McCutchan JA, Fierer J, et al (1982) Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307: 1225–1230PubMedCrossRefGoogle Scholar
  16. 16.
    Baumgartner JD, Glauser MP, McCutchan JA, et al (1985) Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 2: 59–63PubMedCrossRefGoogle Scholar
  17. 17.
    Wisniewski MA, Kazemi M, Fang IS, et al (1994) Comparison of binding specificity and the function of two human IgM anti-lipid A monoclonal antibodies. Circ Shock 44: 230–237PubMedGoogle Scholar
  18. 18.
    Barclay GR (1990) Antibodies to endotoxin in health and disease. Rev Med Microbiol 1: 133–142Google Scholar
  19. 19.
    Bennett-Guerrero E, Ayuso L, Hamilton-Davies C, et al (1997) Relationship of preoperative antiendotoxin core antibodies and adverse outcomes following cardiac surgery. JAMA 277: 646–650PubMedCrossRefGoogle Scholar
  20. 20.
    Hamilton-Davies C, Barclay GR, Cardigan RA, et al (1997) Relationship between pre-operative endotoxin core antibody levels, gut perfusion and outcome following cardiac valve surgery. Chest 112: 1189–1196PubMedCrossRefGoogle Scholar
  21. 21.
    Bennett-Guerrero E, Panah MH, Barclay GR, et al (2001) Decreased endotoxin immunity is associated with greater mortality and/or prolonged hospitalization after surgery. Anesthesiology 94: 992–998PubMedCrossRefGoogle Scholar
  22. 22.
    Nathens AB, Marshall JC (1999) Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg 134: 170–176PubMedCrossRefGoogle Scholar
  23. 23.
    Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130: 423–429PubMedCrossRefGoogle Scholar
  24. 24.
    Heath RJ, White SW, Rock CO (2001) Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res 40: 467–497PubMedCrossRefGoogle Scholar
  25. 25.
    Mock CN, Jurkovich GJ, Dries DJ, Maier RV (1995) Clinical significance of antibiotic endotoxin-releasing properties in trauma patients. Arch Surg 130: 1234–1240PubMedCrossRefGoogle Scholar
  26. 26.
    Di Padova FE, Mikol V, Barclay GR, et al (1994) Anti-lipopolysaccharide core antibodies. Prog Clin Biol Res 388: 85–94PubMedGoogle Scholar
  27. 27.
    Cryz SJ Jr, Lang A, Rudeberg A, et al (1997) Immunization of cystic fibrosis patients with a Pseudomonas aeruginosa 0-polysaccharide-toxin A conjugate vaccine. Behring Inst Mitt Feb: 345–349Google Scholar
  28. 28.
    Bennett-Guerrero E, McIntosh TJ, Barclay GR, et al (2000) Preparation and preclinical evaluation of a novel liposomal complete-core lipopolysaccharide vaccine. Infect Immun 68: 6202–6208PubMedCrossRefGoogle Scholar
  29. 29.
    Cafiero F, Gipponi M, Bonalumi U, et al (1992) Prophylaxis of infection with intravenous immunoglobulins plus antibiotic for patients at risk for sepsis undergoing surgery for colorectal cancer: results of a randomized, multicenter clinical trial. Surgery 112: 24–31PubMedGoogle Scholar
  30. 30.
    Schedel I, Dreikhausen U, Nentwig B, et al (1991) Treatment of gram-negative septic shock with an immunoglobulin preparation: a prospective, randomized clinical trial. Crit Care Med 19: 1104–1113PubMedCrossRefGoogle Scholar
  31. 31.
    Alejandria MM, Lansang MA, Dans LF, Mantaring JB (2001) Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev CD001090Google Scholar
  32. 32.
    Hodgson JC, Barclay GR, Hay LA, Moon GM, Poxton IR (1995) Prophylactic use of human endotoxin core hyperimmune gammaglobulin to prevent endotoxaemia in colostrum-deprived gnotobiotic lambs challenged orally with Escherichia coli. FEMS Immunol Med Microbiol 11: 171–180PubMedCrossRefGoogle Scholar
  33. 33.
    Smith A, Bawa P, Royston D, Barclay R, Hamilton-Davies C (1999) Peak preoperative Anti-Endotoxin core Antibody concentration is inversely related to hospital stay in high risk cardiac surgical patients. Anesthesiology 91: A88 (abst)Google Scholar
  34. 34.
    Baumgartner JD, Heumann D, Calandra T, Glauser MP (1991) Antibodies to lipopolysaccharides after immunization of humans with the rough mutant Escherichia coli J5. J Infect Dis 163: 169–772CrossRefGoogle Scholar
  35. 35.
    Bhattacharjee AK, Opal SM, Taylor R, et al (1996) A noncovalent complex vaccine prepared with detoxified Escherichia coli J5 ( Rc chemotype) lipopolysaccharide and Neisseria meningitidis Group B outer membrane protein produces protective antibodies against gram-negative bacteremia. J Infect Dis 173: 1157–1163Google Scholar
  36. 36.
    Fujita T, Hara A, Yamazaki Y (2001) Relationship between circulating high density lipoprotein concentrations and interleukin-6 release during abdominal operations. Eur J Surg 167: 347–350PubMedCrossRefGoogle Scholar
  37. 37.
    Delgado-Rodriguez M, Medina-Cuadros M, Martinez-Gallego G, Sillero-Arenas M (1997) Total cholesterol, HDL-cholesterol, and risk of nosocomial infection: a prospective study in surgical patients. Infect Control Hosp Epidemiol 18: 9–18PubMedCrossRefGoogle Scholar
  38. 38.
    Pajkrt D, Doran JE, Koster F, et al (1996) Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 184: 1601–1608PubMedCrossRefGoogle Scholar
  39. 39.
    Giroir BP, Quint PA, Barton P, et al (1997) Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in children with severe meningococcal sepsis. Lancet 350: 1439–1443PubMedCrossRefGoogle Scholar
  40. 40.
    Elsbach P, Weiss J (1998) Role of the bactericidal/permeability-increasing protein in host defence. Curr Opin Immunol 10: 45–49PubMedCrossRefGoogle Scholar
  41. 41.
    Von der Mohlen MAM, Kimmings AN, Wedel NI, et al (1995) Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J Infect Dis 172: 144–151PubMedCrossRefGoogle Scholar
  42. 42.
    Levin M, Quint PA, Goldstein B, et al (2000) Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 356: 961–967PubMedCrossRefGoogle Scholar
  43. 43.
    Demetriades D, Smith JS, Jacobson LE, et al (1999) Bactericidal/permeability-increasing protein (rBPI21) in patients with hemorrhage due to trauma: results of a multicenter phase II clinical trial. rBPI21 Acute Hemorrhagic Trauma Study Group. J Trauma 46: 667–676PubMedCrossRefGoogle Scholar
  44. 44.
    Tani T, Hanasawa K, Endo Y, et al (1998) Therapeutic apheresis for septic patients with organ dysfunction: hemoperfusion using a polymyxin B immobilized column. Artif Organs 22: 1038–1044PubMedCrossRefGoogle Scholar
  45. 45.
    Nemoto H, Nakamoto H, Okada H, et al (2001) Newly developed immobilized polymyxin B fibers improve the survival of patients with sepsis. Blood Purif 19: 361–368PubMedCrossRefGoogle Scholar
  46. 46.
    Schimke J, Mathison J, Morgiewicz J, Ulevitch RJ (1998) Anti-CD14 mAb treatment provides therapeutic benefit after in vivo exposure to endotoxin. Proc Natl Acad Sci USA 95: 13875–13880PubMedCrossRefGoogle Scholar
  47. 47.
    Hawkins LD, Ishizaka ST, McGuinness P, et al (2002) A novel class of endotoxin receptor agonists with simplified structure, toll-like receptor 4-dependent immunostimulatory action, and adjuvant activity. J Pharmacol Exp Ther 300: 655–661PubMedCrossRefGoogle Scholar
  48. 48.
    Christ WJ, Asano O, Robidoux AL, et al (1995) E5531, a pure endotoxin antagonist of high potency. Science 268: 80–83PubMedCrossRefGoogle Scholar
  49. 49.
    Janssens S, Beyaert R (2002) A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci 27: 474–482PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Stephens
  • M. Mythen

There are no affiliations available

Personalised recommendations