Advertisement

Management of Circulatory and Respiratory Failure Using Less Invasive Hemodynamic Monitoring

  • F. Michard
  • A. Perel

Abstract

In patients instrumented with a central venous line and a thermodilution arterial catheter, the transpulmonary thermodilution technique — currently available on the “PiCCOplus” monitor (Pulsion Medical Systems, Munich, Germany) and on the “CCO” cardiac output module of Philips Medical Systems — allows the simultaneous assessment of valuable cardiovascular and dynamic heart-lung-interaction parameters. After central venous injection of an ice-cold or room-tempered saline bolus, a thermistor in the tip of the arterial catheter is used to measure the downstream temperature changes. The cardiac output is then calculated by the analysis of the thermodilution curve using a modified Stewart-Hamilton algorithm. The monitor also calculates the mean transit time and the exponential downslope time of the transpulmonary thermodilution curve. The product of cardiac output and mean transit time is the volume of distribution of the thermal indicator [1]. This volume of distribution, the so-called ‘intrathoracic thermal volume’, is made up of the intrathoracic blood volume (ITBV) and the extravascular lung water (EVLW) (Fig. 1). The product of cardiac output and exponential downslope time is the ‘pulmonary thermal volume’ [2], which is composed of the pulmonary blood volume and the EVLW (Fig. 1). Therefore, the volume of blood contained in the four heart chambers — called the global end-diastolic volume (GEDV) — is easily obtained as the difference between the intrathoracic thermal volume and the pulmonary thermal volume [3, 4] (Fig. 1). The ITBV has been shown to be quite consistently 25% greater than the GEDV [4]. Therefore, the ITBV is estimated as 1.25×GEDV and the EVLW as the difference between the intrathoracic thermal volume and the ITBV [4] (Fig. 1).

Keywords

Fluid Responsiveness Stroke Volume Variation Extravascular Lung Water Transpulmonary Thermodilution Predict Fluid Responsiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meier P, Zierler KL (1954) On the theory of indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731–744PubMedGoogle Scholar
  2. 2.
    Newman EV, Merrel M, Genecin A, et al (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4: 735–746PubMedCrossRefGoogle Scholar
  3. 3.
    Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25: 216–219PubMedCrossRefGoogle Scholar
  4. 4.
    Sakka SG, Rt hl CC, Pfeiffer UJ, Dewald O, Reichart B (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187PubMedCrossRefGoogle Scholar
  5. 5.
    Gödje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double-indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113: 1070–1077PubMedCrossRefGoogle Scholar
  6. 6.
    Sakka SG, Reinhart K, Meier-hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25: 843–846PubMedCrossRefGoogle Scholar
  7. 7.
    Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27: 2407–2412PubMedCrossRefGoogle Scholar
  8. 8.
    McLuckie A, Marsh M, Murdoch I, Anderson D (1996) A comparison of pulmonary and femoral artery thermodilution cardiac indices in paediatric intensive care patients. Acta Paediatr 85: 336–338PubMedCrossRefGoogle Scholar
  9. 9.
    Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med 23: 987–991PubMedCrossRefGoogle Scholar
  10. 10.
    Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A (2000) Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output. J Cardiothorac Vasc Anesth 14: 119–124PubMedCrossRefGoogle Scholar
  11. 11.
    Pauli C, Faller U, Genz T, Hennig M, Lorenz HP, Hess J (2002) Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med 28: 947–952PubMedCrossRefGoogle Scholar
  12. 12.
    Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE (1990) A multicenter study of physician’s knowledge of the pulmonary artery catheter. JAMA 264: 2928–2932PubMedCrossRefGoogle Scholar
  13. 13.
    Teboul JL, Pinsky MR, Mercat A, Kline RA (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28: 3631–3636PubMedCrossRefGoogle Scholar
  14. 14.
    Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9: 437–443PubMedCrossRefGoogle Scholar
  15. 15.
    Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenge. Chest 98: 1450–1454PubMedCrossRefGoogle Scholar
  16. 16.
    Diebel LN, Wilson RF, Tagett MG, Kline RA (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127: 817–822PubMedCrossRefGoogle Scholar
  17. 17.
    Diebel L, Wilson RF, Heins J, Larky M, Warsow K, Wilson S (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37: 950–955PubMedCrossRefGoogle Scholar
  18. 18.
    Thys DM, Hillel Z, Goldman ME, Mindich BP, Kaplan JA (1987) A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67: 630–634PubMedCrossRefGoogle Scholar
  19. 19.
    Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81: 376–387PubMedCrossRefGoogle Scholar
  20. 20.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–1321PubMedCrossRefGoogle Scholar
  21. 21.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355PubMedGoogle Scholar
  22. 22.
    Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18: 142–147PubMedCrossRefGoogle Scholar
  23. 23.
    Preisman S, Pfeiffer U, Lieberman N, Perel A (1997) New monitors of intravascular volume: a comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med 23: 651–657PubMedCrossRefGoogle Scholar
  24. 24.
    Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14: 78–83PubMedCrossRefGoogle Scholar
  25. 25.
    Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–781PubMedCrossRefGoogle Scholar
  26. 26.
    Wiesenack C, Prasser C, Keyl C, Rodijg G (2001) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15: 584–588PubMedCrossRefGoogle Scholar
  27. 27.
    Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195PubMedCrossRefGoogle Scholar
  28. 28.
    Michard F, Alaya S, Zarka V, et al (2002) Effects of volume loading and dobutamine on transpulmonary thermodilution global end-diastolic volume. Intensive Care Med 28: 53CrossRefGoogle Scholar
  29. 29.
    McLuckie A, Bihari D (2000) Investigating the relationship between intrathoracic blood volume index and cardiac index. Intensive Care Med 26: 1376–1378PubMedCrossRefGoogle Scholar
  30. 30.
    Buhre W, Kazmaier S, Sonntag H, Weyland A (2001) Changes in cardiac output and intra-thoracic blood volume: a mathematical coupling of data? Acta Anesthesiol Scand 45: 863–867CrossRefGoogle Scholar
  31. 31.
    Schiffmann H, Erdlenbruch B, Singer D, et al (2002) Assessment of cardiac output, intra-vascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 16: 592–597PubMedCrossRefGoogle Scholar
  32. 32.
    Michard F, and Teboul JL (2002) Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 121: 2000–2008PubMedCrossRefGoogle Scholar
  33. 33.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Anesthesiology 89: 1309–1310PubMedCrossRefGoogle Scholar
  34. 34.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–289PubMedCrossRefGoogle Scholar
  35. 35.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502PubMedCrossRefGoogle Scholar
  36. 36.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–138PubMedCrossRefGoogle Scholar
  37. 37.
    Godje O, Thiel C, Lamm P, et al (1999) Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68: 1532–1536PubMedCrossRefGoogle Scholar
  38. 38.
    Buhre W, Weyland A, Kazmaier S, et al (1999) Comparison of cardiac output assessed by pulse contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13: 437–440PubMedCrossRefGoogle Scholar
  39. 39.
    Rodig G, Prasser C, Keyl C, Hobbahn J (1999) Continuous cardiac output measurement: pulse contour analysis versus thermodilution technique in cardiac surgical patients. Br J Anaesth 82: 525–530PubMedCrossRefGoogle Scholar
  40. 40.
    Zollner C, Haller M, Weis M, et al (2000) Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14: 125–129PubMedCrossRefGoogle Scholar
  41. 41.
    Goedje O, Hoeke K, Goetz AE, et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30: 52–58CrossRefGoogle Scholar
  42. 42.
    Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88: 350–356PubMedCrossRefGoogle Scholar
  43. 43.
    Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92: 984–989PubMedCrossRefGoogle Scholar
  44. 44.
    Reuter DA, Kilger E, Felbinger TW, Schmidt C, Lamm P, Goetz AE (2002) Optimising fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anesth 88: 124–126CrossRefGoogle Scholar
  45. 45.
    Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28: 392–398PubMedCrossRefGoogle Scholar
  46. 46.
    Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74: 172–183PubMedCrossRefGoogle Scholar
  47. 47.
    Baudendistel L, Shields JB, Kaminski DL (1982) Comparison of double indicator thermodilution measurements of extravascular lung water (EVLW) with radiographic estimation of lung water in trauma patients. J Trauma 22: 983–988PubMedCrossRefGoogle Scholar
  48. 48.
    Halperin BD, Feeley TW, Mihm FG, Giles C, Guthaner DF, Blank NE (1985) Evaluation of the portable chest roentgenogram for quantitating extravascular lung water in critically ill adults. Chest 88: 649–652PubMedCrossRefGoogle Scholar
  49. 49.
    Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP (1987) A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis 136: 662–668PubMedCrossRefGoogle Scholar
  50. 50.
    Takeda A, Okumura S, Miyamoto T, Hagio M, Fujinaqo T (1995) Comparison of extravascular lung water volume with radiographic findings in dogs with experimentally increased permeability pulmonary edema. J Vet Med Sci 57: 481–485PubMedCrossRefGoogle Scholar
  51. 51.
    Michard F, Zarka V, Alaya S, et al (2002) Extravascular lung water measurements in patients with ALI/ARDS. Intensive Care Med 28: 88Google Scholar
  52. 52.
    Pfeiffer U, Backus G, Blumel G, et al (1990) A fiberoptics based system for integrated monitoring of cardiac output, intrathoracic blood volume, extravascular lung water, 02 saturation, and a-v differences. In: Lewis F, Pfeiffer U (eds) Practical Applications of Fiberoptics in Critical Care Monitoring. Springer, Berlin, pp 114–125CrossRefGoogle Scholar
  53. 53.
    Lewis FR, Elings VB, Christensen JM (1992) Extravascular lung water measurements. In: Artigas A, Lemaire F, Suter PM, Zapol WM (eds) Adult Respiratory Distress Syndrome. Churchill, Livingstone, Edinburgh, pp 215–225Google Scholar
  54. 54.
    Schuster DP (1998) The evaluation of pulmonary edema by measuring lung water. In: Tobin MJ (ed) Principles and Practice of Intensive Care Monitoring. McGraw-Hill, New York, pp 693–705Google Scholar
  55. 55.
    Zeravik J, Pfeiffer UJ (1989) Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water. Acta Anaesthesiol Scand 33: 568–574PubMedCrossRefGoogle Scholar
  56. 56.
    Zevarik J, Borg U, Pfeiffer UJ (1990) Efficacy of pressure support ventilation dependent on extravascular lung water. Chest 97: 1412–1419CrossRefGoogle Scholar
  57. 57.
    Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145: 990–998PubMedCrossRefGoogle Scholar
  58. 58.
    Bindels AJ, van der Hoeven JG, Meinders AE (1999) Pulmonary artery wedge pressure and extravascular lung water in patients with acute cardiogenic pulmonary edema requiring mechanical ventilation. Am J Cardiol 84: 1158–1163PubMedCrossRefGoogle Scholar
  59. 59.
    von Spiegel T, Giannaris S, Wietasch GJK, et al (2002) Effects of dexamethasone on intra-vascular and extravascular fluid balance in patients undergoing coronary bypass surgery with cardiopulmonary bypass. Anesthesiology 96: 827–834CrossRefGoogle Scholar
  60. 60.
    Holm C, Tegeler J, Mayr M, et al (2002) Effect of crystalloid resuscitation and inhalation injury on extravascular lung water. Chest 121: 1956–1962PubMedCrossRefGoogle Scholar
  61. 61.
    Boussat S, Jacques T, Levy B, et al (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28: 712–718PubMedCrossRefGoogle Scholar
  62. 62.
    Katzenelson R, Preisman S, Berkenstadt H, et al (2001) Extravascular lung water measured by a single indicator technique in dogs. Correlation with gravimetric measurements. Crit Care Med 29: 155Google Scholar
  63. 63.
    Schuster DP (1995) Fluid management in ARDS: «keep them dry» or does it matter? Intensive Care Med 21: 101–103PubMedCrossRefGoogle Scholar
  64. 64.
    Dantzker DR and Gutierrez G (1989) Effects of circulatory failure on pulmonary and tissue gas exchange. In: Scharf SM, Cassidy SS (eds) Heart-lung Interactions in Health and Disease. Marcel Dekker, New York, pp 983–1019Google Scholar
  65. 65.
    Hagen PT, Scholz DG, Edwards WD (1984) Incidence and size of patent foramen ovale during the first ten decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 59: 17–20PubMedCrossRefGoogle Scholar
  66. 66.
    Nootens MT, Berarducci LA, Kaufmann E, Devries S, Rich S (1993) The prevalence and significance of a patent foramen ovale in pulmonary hypertension. Chest 104: 1673–1675PubMedCrossRefGoogle Scholar
  67. 67.
    Konstadt SN, Louie EK, Black S, Rao TL, Scanlon P (1991) Intraoperative detection of patent foramen ovale by transesophageal echocardiography. Anesthesiology 74: 212–216PubMedCrossRefGoogle Scholar
  68. 68.
    Cujec B, Polasek P, Mayers I, Johnson D (1993) Positive end-expiratory pressure increases the right-to-left shunt in mechanically ventilated patients with patent foramen ovale. Ann Intern Med 119: 887–894PubMedCrossRefGoogle Scholar
  69. 69.
    Swan HJC, Zapata-Diaz J, Wood EH (1953) Dye dilution curves in cyanotic congenital heart disease. Circulation 8: 70–81PubMedCrossRefGoogle Scholar
  70. 70.
    Fellahi JL, Mourgeon E, Goarin JP, et al (1995) Inhaled nitric oxide-induced closure of a patent foramen ovale in a patient with acute respiratory distress syndrome and life-threatening hypoxemia. Anesthesiology 83: 635–638PubMedCrossRefGoogle Scholar
  71. 71.
    Viquerat CE, Righetti A, Suter PM (1983) Biventricular volumes and function in patients with adult respiratory distress syndrome ventilated with PEEP. Chest 83: 509–514PubMedCrossRefGoogle Scholar
  72. 72.
    Potkin RT, Hudson LD, Weaver LJ, Trobaugh G (1987) Effect of positive end-expiratory pressure on right and left ventricular function in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 135: 307–311PubMedGoogle Scholar
  73. 73.
    Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24: 1381–1387PubMedCrossRefGoogle Scholar
  74. 74.
    Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159: 935–939PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Michard
  • A. Perel

There are no affiliations available

Personalised recommendations