Cardiac Output Monitoring: Will New Technologies Replace the Pulmonary Artery Catheter?

  • J. A. L. Pittman
  • K. J. Gupta
Conference paper


Since its introduction into clinical practice by Swan and colleagues in 1970, pulmonary artery catheterization has remained the ‘gold standard’ of hemodynamic monitoring for the critically ill medical or surgical patient. Although the original focus of pulmonary artery catheter (PAC) monitoring was the measurement of pulmonary artery and pulmonary artery wedge pressures [1], the catheter was soon modified to allow intermittent measurement of cardiac output by the thermodilution method [2]. Many would argue that the greatest value of PAC monitoring is not the accurate estimation of left ventricular filling pressures, repeatedly shown to be an unreliable estimate of preload [3–5], but rather the ability to measure cardiac output and so titrate therapy to achieve hemodynamic goals. Several groups have reported the benefits of optimizing cardiac index or systemic oxygen delivery (DO2) in the management of the critically ill [6–9].


Cardiac Output Right Ventricle Pulmonary Artery Catheter Pulse Pressure Variation Stroke Volume Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283: 447–451PubMedCrossRefGoogle Scholar
  2. 2.
    Ganz W, Donoso R, Marcus H, Forrester J, Swan H (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27: 392–396PubMedCrossRefGoogle Scholar
  3. 3.
    Baek SM, Makabali GG, Bryan-Brown CW, Kusek JM, Shoemaker WC (1975) Plasma expansion in surgical patients with high central venous pressure (CVP): the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery 78: 304–315PubMedGoogle Scholar
  4. 4.
    Calvin J, Driedger A, Sibbald J (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients. Crit Care Med 9: 437–443PubMedCrossRefGoogle Scholar
  5. 5.
    Lichtwark-Aschoff M, Zeravik J, Pfeiffer U (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18: 137–138CrossRefGoogle Scholar
  6. 6.
    Boyd O, Bennett ED (1999) Achieving the goal. Crit Care Med 27: 2298–2299PubMedCrossRefGoogle Scholar
  7. 7.
    Shoemaker W (1990) Use and abuse of the balloon tip pulmonary artery (Swan-Ganz) catheter: Are patients getting their money’s worth? Crit Care Med 18: 1294–1296.PubMedCrossRefGoogle Scholar
  8. 8.
    Singer M (1998) Cardiac output in 1998. Heart 79: 425–428PubMedGoogle Scholar
  9. 9.
    Wilson J, Woods I, Fawcett J, et al (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. Br Med J 318: 1099–1103CrossRefGoogle Scholar
  10. 10.
    Sise M, Hollingsworth P, Brimm J (1981) Complications of the flow-directed pulmonary artery catheter: A prospective analysis in 219 patients. Crit Care Med 9: 315–320PubMedCrossRefGoogle Scholar
  11. 11.
    Connors A Jr, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterisation in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276: 889–897PubMedCrossRefGoogle Scholar
  12. 12.
    Gnaegi A, Feihl F, Perret C (1997) Intensive care physician’s insufficient knowledge of right heart catheterization at the bedside: time to act? Crit Care Med 25: 213–220PubMedCrossRefGoogle Scholar
  13. 13.
    Iberti T, Fischer E, Leibowitz A (1990) A multicenter study of physicians knowledge of the pulmonary artery catheter: Pulmonary Artery Study Group. JAMA 264: 2928–2932PubMedCrossRefGoogle Scholar
  14. 14.
    Eisenberg P, Jaffe A, Schuster D (1984) Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med 12: 549–553PubMedCrossRefGoogle Scholar
  15. 15.
    Tibby S, Hatherill M, Marsh M, Murdoch I (1997) Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child 77: 516–518PubMedCrossRefGoogle Scholar
  16. 16.
    Trottier S, Taylor R (1997) Physicians attitude toward and knowledge of the pulmonary artery catheter: Society of Critical Care Medicine membership survey. New Horiz 5: 201–206PubMedGoogle Scholar
  17. 17.
    Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307–310PubMedCrossRefGoogle Scholar
  18. 18.
    Critchley L, Critchley J (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit 15: 85–88CrossRefGoogle Scholar
  19. 19.
    Hodges M, Downs J, Mitchell L (1975) Thermodilution and Fick cardiac index determinations following cardiac surgery. Crit Care Med 3: 182–184PubMedCrossRefGoogle Scholar
  20. 20.
    Olsson B, Pool J, Vandermoten P, Varnauskas E, Wassen R (1970) Validity and reproducibility of determination of cardiac output by thermodilution in man. Cardiology 55: 136–148PubMedCrossRefGoogle Scholar
  21. 21.
    Stetz C, Miller RG, Kelly GE, Raffin TA (1982) Reliability of the thermodilution method in the determination of cardiac out put in clinical practice. Am Rev Respir Dis 126: 1001–1004PubMedGoogle Scholar
  22. 22.
    Schuster A, Nanda N (1984) Doppler echocardiographic measurement of cardiac output: Comparison with a non-golden standard. Am J Cardiol 53: 257–259PubMedCrossRefGoogle Scholar
  23. 23.
    Boerboom L, Kinney T, Olinger G, Hoffmann R (1993) Validity of cardiac output measurement by the thermodilution method in the presence of acute tricuspid regurgitation. J Thorac Cardiovasc Surg 106: 636–642PubMedGoogle Scholar
  24. 24.
    Cigarroa R, Lange R, Williams R, Bedotto J, Hillis L (1989) Underestimation of cardiac output by thermodilution in patients with tricuspid regurgitation. Am J Med 86: 417–420PubMedCrossRefGoogle Scholar
  25. 25.
    Bazaral M, Petre J, Novoa R (1992) Errors in thermodilution cardiac output measurements caused by rapid pulmonary artery temperature decreases after cardiopulmonary bypass. Anesthesiology 77: 31–37PubMedCrossRefGoogle Scholar
  26. 26.
    Wetzel R, Latson T (1985) Major errors in thermodilution cardiac output measurement during rapid volume infusion. Anesthesiology 62: 684–687PubMedCrossRefGoogle Scholar
  27. 27.
    Snyder J, Powner D (1982) Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med 10: 677–682CrossRefGoogle Scholar
  28. 28.
    Stevens JH, Raffin TA, Mihm FG, Rosenthal MH, Stetz CW (1985) Thermodilution cardiac output measurement. JAMA 253: 2240–2242PubMedCrossRefGoogle Scholar
  29. 29.
    Kubicek W, Karnegis J, Patterson R (1966) Development and evaluation of an impedance cardiac output system. Aviat Space Environ Med 37: 1208–1212Google Scholar
  30. 30.
    Shoemaker WC, Thangathurai D, Wo CC, et al (1999) Intraoperative evaluation of tissue perfusion in high-risk patients by invasive and noninvasive hemodynamic monitoring. Crit Care Med 27: 2147–2152PubMedCrossRefGoogle Scholar
  31. 31.
    Preiser J, Daper A, Parquier J, Contempre B, Vincent JL (1989) Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 221–223PubMedCrossRefGoogle Scholar
  32. 32.
    Capek J, Roy R (1988) Noninvasive measurement of cardiac output using partial CO2 re-breathing IEEE Transactions Biomed Engin 35: 653–661Google Scholar
  33. 33.
    Guzzi L, Jaffe M, Orr J (1998) Clinical evaluation of a new non-invasive method of cardiac output measurement: Preliminary results in CABG patients. Anesthesiology 89: A543 (abst)Google Scholar
  34. 34.
    Odenstedt H, Stenqvist O, Lundin S (2002) Clinical evaluation of a partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand 46: 152–159PubMedCrossRefGoogle Scholar
  35. 35.
    Watt RC, Loeb R, Orr J (1998) Comparison of a new non-invasive cardiac output technique with invasive bolus and continuous thermodilution. Anesthesiology 89: A536 (abst)Google Scholar
  36. 36.
    Abrams J, Weber R, Holmen K (1989) Continuous cardiac output determination using transtracheal Doppler: Initial results in humans. Anesthesiology 71: 11–15PubMedCrossRefGoogle Scholar
  37. 37.
    Segal J, Nassi M, Ford A, Schuenemeyer T (1990) Instantaneous and continuous cardiac output in humans obtained with a Doppler pulmonary artery catheter. J Am Coll Cardiol 16: 1398–1407PubMedCrossRefGoogle Scholar
  38. 38.
    Huntsman L, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA (1983) Noninvasive Doppler determination of cardiac output in man. Clinical validation. Circulation 67: 593–602PubMedCrossRefGoogle Scholar
  39. 39.
    Mark J, Steinbrook RA, Gugino LD, et al (1986) Continuous noninvasive monitoring of cardiac output with esophageal Doppler ultrasound during cardiac surgery. Anesth Analg 65: 1013–1020PubMedCrossRefGoogle Scholar
  40. 40.
    Boulnois J-L, Pechoux T (2000) Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo-3000. J Clin Monit Comput 16: 127–140PubMedCrossRefGoogle Scholar
  41. 41.
    Gan T, Arrowsmith J (1997) Oesophageal Doppler monitor. Br Med J 315: 893–894CrossRefGoogle Scholar
  42. 42.
    Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. Br Med J 315: 909–912CrossRefGoogle Scholar
  43. 43.
    Davies J, Allen D, Chant A (1991) Non-invasive Doppler-derived cardiac output: a validation study comparing this technique with thermodilution and Fick methods. Eur J Vasc Surg 5: 497–500PubMedCrossRefGoogle Scholar
  44. 44.
    Feinberg M, Hopkins WE, Davila-Roman VG, Barzilai B (1995) Multiplane transesophageal echocardiographic Doppler imaging accurately determines cardiac output measurements in critically ill patients. Chest 107: 769–773PubMedCrossRefGoogle Scholar
  45. 45.
    Freund P (1987) Transesophageal Doppler scanning versus thermodilution during general anesthesia: an initial comparison of cardiac output techniques. Am J Surg 153: 490–494PubMedCrossRefGoogle Scholar
  46. 46.
    Singer M, Clarke J, Bennett E (1989) Continuous haemodynamic monitoring by oesophageal Doppler. Crit Care Med 17: 447–452PubMedCrossRefGoogle Scholar
  47. 47.
    DiCorte C, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME (2000) Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg 69: 1782–1786PubMedCrossRefGoogle Scholar
  48. 48.
    Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: beat-by-beat cardiac output monitoring. Int Anesthiol Clin 31: 99–125CrossRefGoogle Scholar
  49. 49.
    Singer M, Bennett E (1991) Non-invasive optimization of left ventricular filling esophageal Doppler. Crit Care Med 19: 1132–1137PubMedCrossRefGoogle Scholar
  50. 50.
    Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM (1998) Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 158: 77–83PubMedCrossRefGoogle Scholar
  51. 51.
    Lefrant J, Bruelle P, Aya AG, et al (1998) Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med 24: 347–352PubMedCrossRefGoogle Scholar
  52. 52.
    Linton R, Band D, Haire K (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71: 262–266PubMedCrossRefGoogle Scholar
  53. 53.
    Kurita T, Morita K, Kato S, Kikura M, Ikeda K (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79: 770–775PubMedCrossRefGoogle Scholar
  54. 54.
    Linton R, Band D, O’Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25: 1796–1800PubMedCrossRefGoogle Scholar
  55. 55.
    Garcia-Rodriguez C, Pittman J, Cassell C, Young C, Sum Ping J, Mark J (2002) Lithium Dilution Cardiac Output Measurement: A clinical assessment of central venous and peripheral venous indicator injection. Crit Care Med 30: 2199–2204PubMedCrossRefGoogle Scholar
  56. 56.
    Rödig G, Prasser C, Key! C, Liebold A, Hobbhahn J (1999) Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82: 525–530PubMedCrossRefGoogle Scholar
  57. 57.
    Hirschl M, Binder M, Gwechenberger M, et al (1997) Noninvasive assessment of cardiac output in critically ill patients by analysis of the finger blood pressure waveform. Crit Care Med 25: 1909–1914PubMedCrossRefGoogle Scholar
  58. 58.
    Zollner C, Haller M, Weiss M, et al (2000) Beat-to beat measurement of cardiac output by intravascular pulse contour analysis: A prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14: 125–129PubMedCrossRefGoogle Scholar
  59. 59.
    Tibby S, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Licks in ventilated children and infants. Intensive Care Med 23: 987–991PubMedCrossRefGoogle Scholar
  60. 60.
    Sakka S, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25: 843–846PubMedCrossRefGoogle Scholar
  61. 61.
    Reuter D, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195PubMedCrossRefGoogle Scholar
  62. 62.
    Bongard F (1984) Morphologic and physiologic correlates of increased extra-vascular lung water. Surgery 96: 395–403PubMedGoogle Scholar
  63. 63.
    Linton N, Linton R (2001) Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86: 486–496PubMedCrossRefGoogle Scholar
  64. 64.
    Berkenstadt H, Margalit N, Hadani M, et al (2001) Stoke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Ana1g 92: 984–989CrossRefGoogle Scholar
  65. 65.
    Gunn S, Pinsky M (2001) Implications of arterial pressure variation in patients in the intensive care unit. Curr Opin Crit Care 7: 212–217PubMedCrossRefGoogle Scholar
  66. 66.
    Michard F, Boussat S, Chemla D, et al (2000) Relation between arterial changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatorty failure. Am J Respir Crit Care Med 162: 134–138PubMedCrossRefGoogle Scholar
  67. 67.
    Mihm F, Gettinger A, Hanson CW 3rd, et al (1998) A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 26: 1346–1350PubMedCrossRefGoogle Scholar
  68. 68.
    Yelderman M, Ramsay MA, Quinn MD, et al (1992) Continuous thermodilution cardiac output measurements in intensive care patients. J Cardiothorac Vasc Anaesth 6: 270–274CrossRefGoogle Scholar
  69. 69.
    Dhainaut J, Brunet F, Monsallier JF, et al (1987) Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 15: 148–152PubMedCrossRefGoogle Scholar
  70. 70.
    Jardin F, Brun-Ney D, Hardy A, Aegerter P, Beauchet A, Bourdarias JP (1991) Combined thermodilution and two-dimensional echocardiographic evaluation of right ventricular function during respiratory support with PEEP. Chest 99: 162–168PubMedCrossRefGoogle Scholar
  71. 71.
    Urban P, Scheidegger D, Gabathuler J, et al (1987) Thermodilution determination of right ventricular volume and ejection fraction: a comparison with biplane angiography. Crit Care Med 15: 652–655PubMedCrossRefGoogle Scholar
  72. 72.
    Vincent JL, Thirion M, Brimioulle S, Lejeune P, Kahn RJ (1986) Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 12: 33–38PubMedCrossRefGoogle Scholar
  73. 73.
    Diebel L, Wilson RF, Heins J, Larky H, Warsow K, Wilson S (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluation cardiac of preload in trauma patients. J Trauma 37: 950–955PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. A. L. Pittman
  • K. J. Gupta

There are no affiliations available

Personalised recommendations