Immediate Defibrillation for Out-of-Hospital Ventricular Fibrillation

  • P. E. Pepe
  • J. G. Wigginton
  • R. L. Fowler
Conference paper


Despite well-developed emergency medical service (EMS) systems with rapid response advanced cardiac life support (ACLS) capabilities, survival rates for sudden out-of-hospital cardiac arrest have remained low in most venues, even for out-of-hospital ventricular fibrillation (VF), the highly-reversible cause of most sudden out-of-hospital cardiac arrest events [1–4]. These poor resuscitation rates have been attributed most often to delays in the delivery of basic cardiopulmonary resuscitation (CPR) by witnesses, or of rapid defibrillation by EMS personnel [3–4]. However, recent laboratory and clinical data have also begun to suggest that the current standard of immediately providing countershock may be detrimental when VF has been prolonged beyond several minutes [5–9].


Ventricular Fibrillation Emergency Medical Service Chest Compression Spontaneous Circulation Advance Cardiac Life Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zheng ZJ, Croft JB, Giles WH, et al (2002) State-specific mortality from sudden cardiac death — United States 1999. MMWR Morb Mortal Wkly Rep 51: 123–126Google Scholar
  2. 2.
    American Heart Association (2002) Heart and Stroke Statistical Update. AHA Dallas, pp 1–13Google Scholar
  3. 3.
    Cummins RO, Ornato JP, Thies W, Pepe PE (1991) Improving survival from sudden cardiac arrest: the “chain of survival” concept. Circulation 83: 1832–1847PubMedCrossRefGoogle Scholar
  4. 4.
    Becker LB, Pepe PE (1993) Ensuring the effectiveness of community-wide emergency cardiac care. Ann Emerg Med 22: 354–365PubMedCrossRefGoogle Scholar
  5. 5.
    Yakaitis RW, Ewy GA, Otto CW, Taren DL, Moon TE (1980) Influence of time and therapy on ventricular defibrillation in dogs. Crit Care Med 8: 157–163PubMedCrossRefGoogle Scholar
  6. 6.
    Niemann JT, Cairns CB, Sharnia J, Lewis RJ (1992) Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 85: 281–287PubMedCrossRefGoogle Scholar
  7. 7.
    Menegazzi JJ, Seaberg DC, Yealy DM, Davis EA, MacLeod BA (2000) Combination pharmacotherapy with delayed countershock versus standard advanced cardiac life support after prolonged ventricular fibrillation. Prehosp Emerg Care 4: 31–37PubMedCrossRefGoogle Scholar
  8. 8.
    Cobb LA, Fahrenbruch CE, Walsh TR, et al (1999) Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 281: 1182–1188PubMedCrossRefGoogle Scholar
  9. 9.
    Wik L, Hansen TB, Fylling F, Vaagenes P, Steen P (2001) Three minutes of basic cardiopulmonary resuscitation (CPR) of pre-hospital ventricular defibrillation (VF) patients increases the number of patients who restore spontaneous circulation. Circulation (suppl) 104: 17 (abst)Google Scholar
  10. 10.
    Kern KB, Garewal HS, Sanders AB, et al (1990) Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resuscitation 20: 221–229PubMedCrossRefGoogle Scholar
  11. 11.
    Ditchey RV, Goto Y, Lindenfeld J (1992) Myocardial oxygen requirements during experimental cardiopulmonary resuscitation. Cardiovasc Res 26: 791–797PubMedCrossRefGoogle Scholar
  12. 12.
    Angelos MG, Menegazzi JJ, Callaway CW (2001) Bench to bedside: Resuscitation from prolonged ventricular fibrillation. Acad Emerg Med 8: 909–924PubMedCrossRefGoogle Scholar
  13. 13.
    Gaba DM, Talner NS (1982) Myocardial damage following transthoracic direct current countershock in newborn piglets. Fed Cardiol 2: 281–288Google Scholar
  14. 14.
    Tacker WA, Van Fleet JF, Geddes LA (1979) Electrocardiographic and serum enzymatic alterations associated with cardiac alterations induced in dogs by single transthoracic damped sinusoidal defibrillation shocks of various strengths. Am Heart J 98: 85–193CrossRefGoogle Scholar
  15. 15.
    Al-Khadra A, Nikolski V, Efimov IR (2000) The role of electroporation in defibrillation. Circ Res 87: 797–804PubMedCrossRefGoogle Scholar
  16. 16.
    Pepe PE, Abramson NS, Brown CG (1994) ACLS — Does it really work? Ann Emerg Med 23: 1037–1041PubMedCrossRefGoogle Scholar
  17. 17.
    Brown CG, Martin DR, Pepe FE, et al (1992) Standard versus high-dose epinephrine in out-of-hospital cardiac arrest–a controlled clinical trial. N Engl J Med 327: 1051–1055PubMedCrossRefGoogle Scholar
  18. 18.
    Callaham M, Madsen CD, Barton CW, et al (1992) A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. JAMA 268: 2667–2672PubMedCrossRefGoogle Scholar
  19. 19.
    Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care (2000). Circulation (suppl) 102: 1–384Google Scholar
  20. 20.
    Brown CG, Werman HA, Davis EA, Hobson J, Hamlin RL (1987) The effects graded doses of epinephrine on regional myocardial blood flow during cardiopulmonary resuscitation in swine. Circulation 75: 491–497PubMedCrossRefGoogle Scholar
  21. 21.
    Weisfeldt ML, Kerber RE, McGoldrick RP, et al (1995) American Heart Association report on the Public Access Defibrillation Conference December 8–10, 1994. Circulation 92: 2740–2747Google Scholar
  22. 22.
    Caffrey SL, Willoughby PJ, Pepe PE, Becker LB (2002) Public use of automated external defibrillators. N Engl J Med 347: 1242–1247PubMedCrossRefGoogle Scholar
  23. 23.
    Brown CG, Dzwonczyk R (1996) Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock. Ann Emerg Med 27: 184–188PubMedCrossRefGoogle Scholar
  24. 24.
    Strohmenger HU, Linder KH, Crown CG (1997) Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans. Chest 111: 584–589PubMedCrossRefGoogle Scholar
  25. 25.
    Noc M, Weil MH, Gazmuri RJ, Sun S, Biscara J, Tang W (1994) Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med 124: 421–426PubMedGoogle Scholar
  26. 26.
    Strohmenger HU, Linder KH, Keller A, Linder IM, Pfenninger E, Bothner U (1996) Effects of graded doses of vasopressin on median fibrillation frequency in a porcine model of cardiopulmonary resuscitation: Results of a prospective, randomized, controlled trial. Crit Care Med 24: 1360–1365PubMedCrossRefGoogle Scholar
  27. 27.
    Weaver WD, Cobb LA, Dennis D, et al (1985) Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 8: 157–163Google Scholar
  28. 28.
    Cummins RO, Hazinski MF, Kerber RE, et al (1998) Low-energy biphasic waveform defibrillation evidence-based review applied to emergency cardiovascular care guidelines. Circulation 97: 1654–1667PubMedCrossRefGoogle Scholar
  29. 29.
    Wang HE, Menegazzi JJ, Lightfoot CB, Callaway CW, Fertig KC, et al (2001) Effects of bi-phasic versus monophasic defibrillation on the scaling exponent in a swine model of prolonged ventricular fibrillation. Acad Emerg Med 8: 771–780.PubMedCrossRefGoogle Scholar
  30. 30.
    Bardy GH, Ivey TD, Allen MD, Johnson G, Mehra R, Greene HL (1989) A prospective randomized evaluation of biphasic versus monophasic waveform pulses on defibrillation efficacy in humans. J Am Coll Cardiol 14: 728–733PubMedCrossRefGoogle Scholar
  31. 31.
    Kouwenhoven WB, Jude JR, Knickerbocker GG (1960) Closed-chest cardiac massage. JAMA 173: 1064–1067PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. E. Pepe
  • J. G. Wigginton
  • R. L. Fowler

There are no affiliations available

Personalised recommendations