Quantifying Left Ventricular Ejection Effectiveness

  • M. R. Pinsky
Conference paper


Historically, left ventricular (LV) performance has been quantified by measuring indices of global performance, such as stroke work, developed pressure and the LV end-systolic pressure-volume relation (ESPVR) [1]. Suga and Sagawa [1] extended their initial pioneering studies on contractility-defining end-systolic pressure-volume relationships (ESPVR) by incorporating the graphic area inside the LV pressure-volume loop (stroke work or SW) plus the ESPVR-defined left-sided triangle of potential work (Fig. 1), called the LV pressure-volume area (PVA) [2]. Measuring myocardial oxygen consumption (MVO2) as the product of arterio-coronary sinus oxygen content difference and coronary sinus blood flow, they demonstrated that changes in the LV PVA induced proportional changes in MVO2. Thus, increasing either LV volume or ejection pressure increases MVO2 in a predictable fashion. Similarly, any process that reduces this PVA also reduces MVO2. This simple and elegant construct allows physicians to predict with great accuracy the impact of specific drugs and surgical interventions on LV ejection efficiency, defined as the ratio of SW to MVO2. This construct assumes that myocardial contraction occurs in a uniform fashion from initiation of systole to end-ejection, such that all components of the contractile apparatus shorten to a minimal volume at the same instant.


Stroke Volume Left Ventricular Ejection Tissue Doppler Imaging Left Ventricular Volume Ventricular Pace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised supported canine left ventricle. Circ Res 35: 117–134PubMedCrossRefGoogle Scholar
  2. 2.
    Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240: H39 - H44PubMedGoogle Scholar
  3. 3.
    LeWinter M, Kent R, Kroener J, Carew T, Covell J (1975) Regional differences in myocardial performance in the left ventricle of the dog. Circ Res 37: 191–199PubMedCrossRefGoogle Scholar
  4. 4.
    Haendchen RV, Wyatt HL, Maurer G, et al (1983) Quantitation of regional cardiac function by two-dimensional echocardiography I. Patterns of contraction on the normal left ventricle. Circulation 67: 1234–1245PubMedCrossRefGoogle Scholar
  5. 5.
    Bonow RO (1990) Regional left ventricular nonuniformity: effects on left ventricular diastolic function in ischemic heart disease, hypertrophic cardiomyopathy, and the normal heart. Circulation 81:III54–III65Google Scholar
  6. 6.
    Park RC, Little WC, O’Rourke RA (1985) Effect of alteration of LV activation sequence on the LV end-systolic pressure-volume relation in closed-chest dogs. Circ Res 57: 706–717PubMedCrossRefGoogle Scholar
  7. 7.
    Little W, Reeves R, Arciniegas J, Katholi R, Rogers E (1982) Mechanism of abnormal interventicular septal motion during delayed left ventricular activation. Circulation 65: 1486–1491PubMedCrossRefGoogle Scholar
  8. 8.
    Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 238: H773 - H780Google Scholar
  9. 9.
    Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross J (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247: H727 - H738PubMedGoogle Scholar
  10. 10.
    Buffington CW, Coyle RJ (1991) Altered load dependence of post-ischemic myocardium. Anesthesiology 75: 464–474PubMedCrossRefGoogle Scholar
  11. 11.
    Miura T, Bhargava V, Guth BD, et al (1993) Increased afterload intensifies asynchronous wall motion and impairs ventricular relaxation. J Appl Physiol 75: 389–396PubMedGoogle Scholar
  12. 12.
    Thys DM (1987) The intraoperative assessment of regional myocardial performance: Is the cart before the horse? J Cardiothorac Anesth 1: 273–275PubMedCrossRefGoogle Scholar
  13. 13.
    Weiss JL, Buckley BH, Hutchins GM, Mason SJ (1981) Two-dimensional echocardiographic recognition of myocardial injury in man: comparison with post-mortem studies. Circulation 63: 401–408PubMedCrossRefGoogle Scholar
  14. 14.
    Little WC, O’Roarke RA (1985) Effect of regional ischemia on the left ventricular end-systolic pressure-volume relation in chronically instrumented dogs. J Am Coll Cardiol 5: 297–302PubMedCrossRefGoogle Scholar
  15. 15.
    Kass DA, Chen C-H, Curry C, et al (1999) Improved LV mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular condition delay. Circulation 99: 1567–1573PubMedCrossRefGoogle Scholar
  16. 16.
    Grover M, Glanz SA (1983) Endocardial pacing affects left ventricular end-diastolic volume and performance in the intact anesthetized dog. Circ Res 53: 72–83PubMedCrossRefGoogle Scholar
  17. 17.
    Badke FR, Boinay P, Covell JW (1980) Effect of ventricular pacing on regional ventricular performance. Am J Physiol 238: H858 - H867PubMedGoogle Scholar
  18. 18.
    Toussaint J-F, Lavergne T, Kerrou K, et al (2002) Ventricular coupling of electrical and mechanical dyssynchronization in heart failure patients. Pacing Clin Electrophysiol 25: 178–182PubMedCrossRefGoogle Scholar
  19. 19.
    Prinzen FW, Hunter WC, Wymann BT, et al (1999) Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic imaging tagging. J Am Coll Cardiol 33: 1735–1742PubMedCrossRefGoogle Scholar
  20. 20.
    Delhass T, Arts T, Prinzen et al (1993) Regional fibre stress-fibre strain area as in the canine left ventricle. Pflugers Arch 423: 78–87CrossRefGoogle Scholar
  21. 21.
    Strum DP, Pinsky MR (2000) Esmolol-induced regional wall motion abnormalities do not affect regional ventricular elastances. Anesth Analg 90: 252–261PubMedGoogle Scholar
  22. 22.
    Burkhoff D, Oikawa RY, Sagawa K (1986) Influence of pacing site on canine left ventricular contraction. Am J Physiol 251: H428 - H435PubMedGoogle Scholar
  23. 23.
    Baller D, Wolpers HG, Zipfel J, Bretschneider HJ, Hellige G (1988) Comparison of RA, RV apex and AV sequential pacing on MVO2 and cardiac efficiency: Pacing Clin Electrophysiol 11: 394–403CrossRefGoogle Scholar
  24. 24.
    Wiggers CJ (1925) The muscular reactions of mammalian ventricles to artificial surface stimuli. Am J Physiol 73: 346–378Google Scholar
  25. 25.
    Xiao HB, Roy C, Gibson DG (1994) Nature of ventricular activation in patients with dilated cardiomyopathy: evidence for bilateral bundle branch block. Br Heart J 72: 167–174PubMedCrossRefGoogle Scholar
  26. 26.
    Freedman RA, Alderman EL, Sheffield LT, Saporito M, Fisher LD (1987) Bundle branch block in patients with chronic coronary artery disease: angiographic correlates and prognostic significance. J Am Coll Cardiol 10: 73–80PubMedCrossRefGoogle Scholar
  27. 27.
    Blanc J-J, Etienne Y, Gilard M, et al (1997) Evaluation of different ventricular pacing sites in patients with severe heart failure. Circulation 96: 3273–3277PubMedCrossRefGoogle Scholar
  28. 28.
    Auricchio A, Salo RW (1997) Acute hemodynamic improvement by pacing in patients with severe congestive heart failure. Pacing Clin Electrophysiol 20: 313–324PubMedCrossRefGoogle Scholar
  29. 29.
    Auricchio A, Stellbrink C, Block M, et al (1998) Effect of pacing chamber and atrio-ventricular delay on acute systolic function of paced heart failure patients in PATH-CHF Study. Pacing Clin Electrophysiol 21 (Part I I ): 837 (abst)Google Scholar
  30. 30.
    Strum DP, Pinsky MR (2000) Modeling of asynchronous myocardial contraction by effective stroke volume analysis. Anesth Analg 90: 243–251PubMedGoogle Scholar
  31. 31.
    Gorcsan JG, Strum DP, Mandarino WA, Gulati VK, Pinsky MR (1997) Quantitative assessment of regional LV contractility by tissue Doppler imaging. Circulation 95: 2423–2433PubMedCrossRefGoogle Scholar
  32. 32.
    Gorcsan J III, Strum DP, Mandarino WA, Pinsky MR (2001) Color-coded tissue Doppler assessment of the effects of acute ischemia on regional left ventricular function: comparison with sonomicrometry. J Am Soc Echocardiogr 14: 335–343PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. R. Pinsky

There are no affiliations available

Personalised recommendations