Skip to main content

Respiratory Muscle Unloading during Mechanical Ventilation

  • Conference paper
Intensive Care Medicine
  • 353 Accesses

Abstract

Mechanical ventilation is aimed at unloading the respiratory muscles and maintaining adequate ventilation. Webster’s dictionary states that ‘unloading’ is “to remove or discharge a load”; however, the aim in mechanical ventilation may just be to reduce the load. Unloading can be complete, as with controlled ventilation where the ventilator assumes all work and the respiratory muscles are inactive, or partial, where the ventilator assumes a portion of the workload and the respiratory muscles are active and contribute to the work performed. The ‘load’ to the respiratory muscles can be quantified as the force (pressure) that is required to displace the respiratory system in order to generate flow and volume. In patients with respiratory failure, this load is usually increased due to abnormal respiratory mechanics and intrinsic positive end-expiratory pressure (PEEPi) [1]. Also in such patients, the force generating capacity can be severely reduced [2], and therefore, what may appear to be a ‘normal’ load may actually represent an increased relative load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich TK, Prezant DJ (1994) Indications for mechanical ventilation. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill, New York, pp 155–189

    Google Scholar 

  2. Goldstone J, Moxham J (1991) Weaning from mechanical ventilation. Thorax 46: 56–62

    Article  PubMed  CAS  Google Scholar 

  3. Tobin M, Brochard L, Rossi A (2002) Assessment of respiratory muscle function in the intensive care unit. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166: 518–624

    Google Scholar 

  4. Banner MJ, Kirby RR, Gabrielli A, Blanch PB, Layon AJ (1994) Partially and totally unloading respiratory muscles based on real-time measurements of work of breathing. Chest 106: 1835–1842

    Article  PubMed  CAS  Google Scholar 

  5. Beck J, Sinderby C, Lindström L, Grassino A (1998) Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol 85: 1123–1134

    PubMed  CAS  Google Scholar 

  6. Sinderby C, Spahija J, Beck J, Kaminski D, Yan S, Sliwinski P (2001) Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163: 1637–1641

    Article  PubMed  CAS  Google Scholar 

  7. Sinderby C, Spahija J, Beck J (2001) Changes in respiratory effort sensation over time are linked to the frequency content of diaphragm electrical activity. Am J Respir Crit Care Med 163: 905–910

    Article  PubMed  CAS  Google Scholar 

  8. Gauthier AP, Verbanck V, Estenne M, Segebarth C, Macklem PT, Paiva M (1994) Three-dimensional reconstruction of the in vivo diaphragm shape at different lung volumes. J Appl Physiol 76: 495–506

    PubMed  CAS  Google Scholar 

  9. Spahija J, Beck J, Comtois N, et al (1999) Use of diaphragm activation in the assessment of neuro-ventilatory coupling. Am J Respir Crit Care Med 159: A365 (abst)

    Google Scholar 

  10. Sinderby C, Beck J, Weinberg J, Spahija J, Grassino A (1998) Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 85: 2146–2158

    PubMed  CAS  Google Scholar 

  11. Hubmayr RD, Litchy WJ, Gay PC, Nelson SB (1989) Transdiaphragmatic twitch pressure. Effects of lung volume and chest wall shape. Am Rev Respir Dis 139: 647–652

    Google Scholar 

  12. Smith J, Bellemare F (1987) Effect of lung volume on in vivo contraction characteristics of the human diaphragm. J Appl Physiol 62: 1893–1900

    PubMed  CAS  Google Scholar 

  13. Agostini E, Rahn H (1960) Abdominal and thoracic pressures at different lung volumes. J Appl Physiol 15: 1087–1092

    Google Scholar 

  14. Hershenshorn MB, Kikuchi Y, Loring S (1988) Relative strengths of the chest wall muscles. J Appl Physiol 65: 852–862

    Google Scholar 

  15. Goldman M, Grassino A, Mead J, Sears T (1978) Mechanics of the human diaphragm during voluntary contractions: dynamics. J Appl Physiol 44: 840–848

    PubMed  CAS  Google Scholar 

  16. Pengelly LD, Anderson AM, Milc-Emili J (1971) Mechanics of the diaphragm J Appl Physiol 30: 797–805

    CAS  Google Scholar 

  17. Corne S, Webster K, Younes M (2000) Effects of inspiratory flow on diaphragmatic motor output in normal subjects. J Appl Physiol 89: 481–492

    PubMed  CAS  Google Scholar 

  18. Beck J, Sinderby C, Lindström L, Grassino A (1998) Crural diaphragm activation during dynamic contractions at various inspiratory flow rates. J Appl Physiol 85: 451–458

    PubMed  CAS  Google Scholar 

  19. Georgopoulos D, Roussos C (1996) Control of breathing in mechanically ventilated patients. Eur Respir J 9: 2151–2160

    Article  PubMed  CAS  Google Scholar 

  20. Aliverti A, Dellaca R, Pelosi P, Chiumello D, Pedotti A, Gattinoni, L (2000) Optoelectric plethysmography in intensive care patients. Am J Respir Care Med 161: 1546–1552

    Article  CAS  Google Scholar 

  21. Froese A, Bryan AC (1974) Effects of anaesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242–255

    Article  PubMed  CAS  Google Scholar 

  22. Grimby G, Hedenstierna G, Lofstrom B (1975) Chest wall mechanics during artificial ventilation. J Appl Physiol 38: 576–580

    PubMed  CAS  Google Scholar 

  23. Krayer S, Rehder K, Vetterman J, Didier E, Ritman E (1989) Position and motion of the human diaphragm during anaesthesia paralysis. Anesthesiology 75: 891–898

    Article  Google Scholar 

  24. Grassino A, Goldman M, Mead J, Sears T (1978) Mechanics of the human diaphragm during voluntary contractions: statics. J Appl Physiol 44: 829–839

    PubMed  CAS  Google Scholar 

  25. Beck J, Gottfried SB, Navalesi P, et al (2001) Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med 164: 419–424

    Article  PubMed  CAS  Google Scholar 

  26. Belman, MJ, Soo Hoo GW, Kuei JH, Shadmehr R (1990) Efficacy of positive vs negative pressure ventilation in unloading the respiratory muscles. Chest 98: 850–856

    Article  PubMed  CAS  Google Scholar 

  27. Brochard L, Pluwska F, Lemaire F (1987) Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis 136: 411–415

    Article  PubMed  CAS  Google Scholar 

  28. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139: 513–521

    Article  PubMed  CAS  Google Scholar 

  29. Viale JP, Duperret S, Mahul P, et al (1998) Time course evolution of ventilatory responses to inspiratory unloading in patients. Am J Respir Crit Care Med 157: 428–434

    Article  PubMed  CAS  Google Scholar 

  30. Beck J, Tucci M, Millotte B, et al (2002) Synchronized intermittent mandatory ventilation elicits the Hering-Breuer reflex in mechanically ventilated infants Am J Respir Crit Care Med 165:A789 (abst)

    Google Scholar 

  31. Imsand C, Feihl F, Perret C, Fitting JW (1994) Regulation of inspiratory neuromuscular output during synchronized intermittent mechanical ventilation. Anesthesiology 80: 13–22

    Article  PubMed  CAS  Google Scholar 

  32. Aldrich T, Sinderby C, McKenzie D, Estenne M, Gandevia S (2002) Electrophysiologic techniques for the assessment of respiratory muscle function. ATS/ERS Statement on Respiratory Muscle Testing. Am J Respir Crit Care Med 166: 518–624

    Google Scholar 

  33. Sinderby C, Navalesi P, Beck J, et al (1999) Neural control of mechanical ventilation in respiratory failure. Nature Med 5: 1433–1436

    Article  PubMed  CAS  Google Scholar 

  34. Beck J, Sinderby C, Weinberg J, Grassino A (1995) Effects of muscle-to-electrode distance on the human diaphragm electromyogram. J Appl Physiol. 79: 975–985

    PubMed  CAS  Google Scholar 

  35. Beck J, Sinderby C, Lindström L, Grassino A (1996) Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm EMG. J Appl Physiol 81: 1434–1449

    PubMed  CAS  Google Scholar 

  36. Lourenco RV, Cherniack NS, Malm JR, Fishman AP (1966) Nervous output from the respiratory centers during obstructed breathing. J Appl Physiol 21: 527–533

    PubMed  CAS  Google Scholar 

  37. Ranieri VM, Giuliani R, Mascia L, et al (1996) Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol. 81: 425436

    Google Scholar 

  38. Slutsky A (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833–1859

    Article  PubMed  CAS  Google Scholar 

  39. Ranieri VM (1997) Optimization of patient-ventilator interactions: closed-loop technology to turn the century. Intensive Care Med 23: 936–939

    Article  PubMed  CAS  Google Scholar 

  40. Rossi A, Appendini L (1995) Wasted efforts and dyssynchrony: is the patient-ventilator battle back? Intensive Care Med 21: 867–870

    Article  PubMed  CAS  Google Scholar 

  41. Sassoon CSH, Foster GT (2001) Patient-ventilator asynchrony. Curr Opin Crit Care 7: 28–33

    Article  PubMed  CAS  Google Scholar 

  42. Tobin M (2001) Advances in mechanical ventilation. N Engl J Med 344: 1986–1996

    Article  PubMed  CAS  Google Scholar 

  43. Tobin M, Jubran A, Laghi F (2001) Patient-ventilator interaction. Am J Respir Grit Care Med 163: 1059–1063

    Article  CAS  Google Scholar 

  44. Appendini L, Purro A, Patessio A, et al (1996) Partitioning of inspiratory muscle workload and pressure assistance in ventilator-dependent COPD patients. Am J Respir Crit Care Med 154: 1301–1309

    Article  PubMed  CAS  Google Scholar 

  45. Calderini E, Confalonieri M, Puccio PG, Francavilla N, Stella L, Gregoretti C (1999) Patient-ventilator asynchrony during non-invasive ventilation: the role of the expiratory trigger. Intensive Care Med 25: 662–667

    Article  PubMed  CAS  Google Scholar 

  46. Imanaka H, Nishimura M, Takeuchi M, Kimball W, Yahagi N, Kumon K (2000) Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation. Crit Care Med 28: 402–407

    Article  PubMed  CAS  Google Scholar 

  47. Jubran A, Van de Graaff, Tobin MJ (1995) Variability in patient-ventilator interaction with pressure support ventilation in patients with COPD. Am J Respir Crit Care Med 152: 129136

    Google Scholar 

  48. Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155: 1940–1948

    Article  PubMed  CAS  Google Scholar 

  49. Maclntyre NR, Ho LH (1991) Effects of initial flow rate and breath termination criteria on pressure support ventilation. Chest 99: 134–138

    Article  Google Scholar 

  50. Tobin MJ (1994) Management of the patient who is “fighting the ventilator”. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill Inc, New York, pp 1149–1162

    Google Scholar 

  51. Yamada Y, Du HL (1998) Effects of different pressure support termination on patient-ventilator synchrony. Respir Care 43: 1048–1057

    Google Scholar 

  52. Yamada Y, Du HL (2000) Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol 88: 2143–2150

    PubMed  CAS  Google Scholar 

  53. Yamada Y, Du HL (2002) Expiratory asynchrony during proportional assist ventilation. Am J Respir Crit Care Med 165: 972–977

    Article  PubMed  Google Scholar 

  54. Schulze A, Rich W, Schellenberg L, Schaller P, He1dt GP (1998) Effects of different gain settings during assisted mechanical ventilation using respiratory unloading in rabbits. Pediatr Res 44: 132–138

    Article  PubMed  CAS  Google Scholar 

  55. Parthasarathy S, Jubran A, Tobin MJ (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 158: 1471–1478

    Article  PubMed  CAS  Google Scholar 

  56. Parthasarathy S, Jubran A, Tobin MJ (2000) Assessment of neural inspiratory time in ventilator-supported patients. Am J Respir Crit Care Med 162: 546–552

    Article  PubMed  CAS  Google Scholar 

  57. Aslanian P, Atrous S, Isabey D, et al (1998) Effects of flow triggering on breathing effort during partial ventilatory assist. Am J Respir Crit Care Med 157: 135–143

    Article  PubMed  CAS  Google Scholar 

  58. Beck J, Spahija J, DeMarchie M, Comtois N, Sinderby C (2002) Unloading during neurally adjusted ventilatory assist (NAVA). Eur Resp J 20: 637s (abst)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beck, J., Spahija, J., Sinderby, C. (2003). Respiratory Muscle Unloading during Mechanical Ventilation. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics