Fusion of Lysosomes with Phagosomes Containing Histoplasma Capsulatum: Use of Fluoresceinated Dextran

  • Linda Groppe Eissenberg
  • William E. Goldman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 239)


The yeast form of Histoplasma capsulatum is able to survive and proliferate inside macrophages (1), the primary target cells for this dimorphic fungal pathogen. Rather than clearing these yeasts from the lung, the macrophages instead harbor the organism and promote the development of a severe pulmonary or disseminated disease. We now believe that the lack of an oxidative burst by macrophages which encounter H. capsulatum (2, 3) may permit the yeasts to enter host cells undamaged. However, the subsequent fate of the phagocytized H. capsulatum yeasts is unclear.


Acridine Orange Mouse Peritoneal Macrophage Scrub Typhus Yersinia Pestis Intracellular Fate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Howard, Intracellular behavior of Histoplasma capsulatum J. Bacteriol. 87: 33 (1964).Google Scholar
  2. 2.
    L. G. Eissenberg and W. E. Goldman, Histoplasma capsulatum fails to trigger release of superoxide from macrophages, Infect. Immun. 55: in press (1987).Google Scholar
  3. 3.
    J. E. Wolf, V. Kerchberger, G. S. Kobayashi, and J. R. Little, Modulation of the macrophage oxidative burst by Histoplasma capsulatum J. Immunol. 138: in press (1987).Google Scholar
  4. 4.
    J. A. Armstrong and P. D. Hart, Response of cultured macrophages to Mycobacterium tuberculosis with observations on fusion of lysosomes with phagosomes, J. Exp. Med. 134: 713 (1971).PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    M. B. Goren, P. D. Hart, M. R. Young, and J. A. Armstrong, Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A. 73:2510 (1976).Google Scholar
  6. 6.
    P. D. Hart and M. R. Young, Interference with normal phagosome-lysosome fusion in macrophages, using ingested yeast cells and suramin, Nature 256: 47 (1975).Google Scholar
  7. 7.
    T. C. Jones and J. G. Hirsch, The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites, J. Exp. Med. 136: 1172 (1972).Google Scholar
  8. 8.
    R. Friis, Interaction of L-cells and Chlamydia psittaci: Entry of the parasite and host responses to its development, J. Bacteriol. 110: 706 (1972)PubMedCentralPubMedGoogle Scholar
  9. 9.
    P. B. Wyrick and E. A. Brownridge, Growth of Chlamydia psittaci in macrophages, Infect. Immun. 19:1054 (1978).Google Scholar
  10. 10.
    M. A. Horwitz and F. R. Maxfield, Leqionella pneumophila inhibits acidification of its phagosome in human monocytes, J. Cell Biol. 99: 1936 (1984).Google Scholar
  11. 11.
    M. A. Horwitz, The Legionnaires’ disease bacterium (Leqionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes, J. Exp. Med. 158: 2108 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    S. C. Straley and P. A. Harmon, Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages, Infect. Immun. 45:655 (1984)Google Scholar
  13. 13.
    M. E. W. Carrol, P. S. Jackett, V. R. Aber, and D. B. Lowrie, Phagolysosome formation, cyclic adenosine 3’:5’-monophosphate and the fate of Salmonella typhimurium within mouse peritoneal macrophages, J. Gen. Microbiol. 110: 421 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    E. T. Akporiaye, J. D. Rowatt, A. A. Aragon, and 0. G. Baca, Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii, Infect. Immun. 40:1155 (1983).Google Scholar
  15. 15.
    C. A. Brown and P. Draper, An electron-microscope study of rat fibroblasts infected with Mycobacterium lepraemurium J. Pathol. 102: 21 (1970).Google Scholar
  16. 16.
    I. N. Brown and P. Draper, Growth of Mycobacterium lepraemurium in the mouse bone marrow: An ultrastructural study, Infect. Immun. 13:1199 (1976).Google Scholar
  17. 17.
    P. D. Hart, J. A. Armstrong, C. A. Brown, and P. Draper, Ultrastructural study of the behavior of macrophages toward parasitic mycobacteria, Infect. Immun. 5:803 (1972).Google Scholar
  18. 18.
    K.-P. Chang, Cellular and molecular mechanisms of intracellular symbiosis in Leishmaniasis, Int. Rev. Cytol. 14S: 267 (1983).Google Scholar
  19. 19.
    N. Nogueira and Z. Cohn, Trypansoma cruzi: Mechanism of entry and intracellular fate in mammalian cells“, J. Exp. Med. 143: 1402. (1976).Google Scholar
  20. 20.
    E. P. Ewing, A. Takeuchi, A. Shirai, and J. V. Osterman, Experimental infection of mouse peritoneal mesothelium with scrub typhus rickettsiae: An ultrastructural study, Infect. Immun. 19:1068 (1978).Google Scholar
  21. 21.
    Y. Rikihisa and S. Ito, Intracellular localization of Rickettsia tsutsugamushi in polymorphonuclear leukocytes, J. Exp. Med. 150: 703 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Dumont and C. Piche, Electron microscopic study of human histoplasmosis, Arch. Pathol. 87:168 (1969).Google Scholar
  23. 23.
    A. Dumont and A. Robert, Electron microscopic study of phagocytosis of Histoplasma capsulatum by hamster peritoneal macrophages, Lab. Invest. 23: 278 (1970).PubMedGoogle Scholar
  24. 24.
    M. R. Edwards, Intracellular fate of Histoplasma capsulatum phagocytosed by murine peritoneal macrophages, Fed. Proc. 41: 963 (1982).Google Scholar
  25. 25.
    L. A. Von Behren, S. Chaudhary, S. Rabinovitch, and R. P. Tewari, Electron microscopic study of phagosome-lysosome (P-L) fusion in normal mouse peritoneal macrophages after exposure to yeast cells of Histoplasma capsulatum (HC), Abstr. Annu. Meet. Am. Soc. Microbiol. 1983:388 (1983).Google Scholar
  26. 26.
    B. Wu-Hsieh and D. H. Howard, Inhibition of growth of Histoplasma capsulatum by lymphokine-stimulated macrophages, J. Immunol. 132: 2593 (1984).PubMedGoogle Scholar
  27. 27.
    D. H. Howard, Fate of Histoplasma capsulatum in guinea pig polymorphonuclear leukocytes, Infect. Immun. 8:412 (1973).Google Scholar
  28. 28.
    M. Merion, P. Schlesinger, R. M. Brooks, J. M. Moehring, T. J. Moehring, and W. S. Sly, Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and viruses, Proc. Natl. Acad. Sci. U.S.A. 80:5313 (1983).Google Scholar
  29. 29.
    M. B. Goren, C. L. Swendsen, J. Fiscus, and C. Miranti, Fluorescent markers for studying phagosome-lysosome fusion, J. Leuk. Biol. 36: 273 (1984).Google Scholar
  30. 30.
    R. D. Vincent, R. Goewert, W. E. Goldman, G. S. Kobayashi, A. M. Lambowitz, and G. Medoff, Classification of Histoplasma capsulatum isolates by restriction fragment polymorphisms, J. Bacteriol. 165: 813 (1986).PubMedCentralPubMedGoogle Scholar
  31. 31.
    K. R. Klimpel and W. E. Goldman, Isolation and characterization of spontaneous avirulent variants of Histoplasma capsulatum, Infect. Immun. 55: in press (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Linda Groppe Eissenberg
    • 1
  • William E. Goldman
    • 1
  1. 1.Department of Microbiology and ImmunologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations