Advertisement

Induction of Immunosuppressive B-Lymphocytes with Components of Candida Albicans

  • Christopher F. Cuff
  • Beryl Packer
  • Victor Rivas
  • Christina M. Rogers
  • Antonio Cassone
  • Raymond Donnelly
  • Thomas J. Rogers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 239)

Abstract

Infections with Candida albicans are associated with a depressed immune response. The immunological profile present during candidiasis is extremely complex. Certain individuals with a congenital defect in the development of a normal cellular immune system are frequently the subject of clinical Candida disease involving mucocutaneous tissues (reviewed in 1). On the other hand, disseminated candidiasis is frequently encountered in individuals suffering with polymorphonuclear leukocyte function such as chronic granulomatous disease, myeloperoxidase deficiency, or Chediak-Higashi Syndrome (2,3,4). Individuals who manifest both mucocutaneous and disseminated forms of candidiasis are rare. The mode of resistance against these two forms of candidiasis presents a paradox since immune mechanisms effective in the first case apparently do not operate in the other.

Keywords

Candida Albicans Chronic Granulomatous Disease Suppressor Cell Chronic Mucocutaneous Candidiasis Chronic Mucocutaneous Candidiasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, T. J., and E. Balish. 1980. Immunity to Candida albicans. Microbiol. Rev. 44: 660–682.Google Scholar
  2. 2.
    Lehrer, R. I. 1970. Measurement of candidacidal activity of specific leukocyte types in mixed cell populations. I. Normal myeloperoxidase deficient, and chronic granulomatous disease neutrophils. Infect. Immun. 2: 42–47.Google Scholar
  3. 3.
    Lehrer, R. I. 1971. Measurement of candidacidal activity of specific leukocyte types in mixed cell poulations. H. Normal and chronic granulomatous disease eosinophils. Infect. Immun. 3: 800–802.Google Scholar
  4. 4.
    Anderson, W. D. 1971. Pathology. C. V. Mosby Co., St. Louis.Google Scholar
  5. 5.
    Valdimarsson, H., J. Higgs, R. Wells, M. Yamamura, J. Hobbs, and P. Holt. 1973. Immune abnormalities associated with chronic mucocutaneous candidiasis. Cell. Immunol. 11: 348–361.Google Scholar
  6. 6.
    Paterson, P., R. Semo, B. Blumenschein, and J. Swetlstad. 1971. Mucocutaneous anergy and a plasma inhibitor of cellular immunity: reversal after amphotericin B therapy. Clin. Exp. Immunol. 9: 595–602.Google Scholar
  7. 7.
    Kirkpatrick, C., R. Rich, and J. Bennett. 1971. Chronic mucocutaneous candidiasis: model-building in cellular immmunity. Ann. Intern. Med. 74: 955–978.Google Scholar
  8. 8.
    Budtz-Jorgensen, E. 1973. Cellular immunity in acquired candidiasis of the palate. Scand. J. Dent. Res. 81: 372–382.Google Scholar
  9. 9.
    Fischer, G., and L. Horbach. 1958. Untersuchungen uber Promunitat und Infektionsimmunitat bei der experimentallen Soorinfektion. Arch. Hyg. Bakteriol. 142: 14–25.Google Scholar
  10. 10.
    Mankiewicz, E., E. Stackiewicz, and M. Liivak. 1959. A polysaccharide isolated f om Candida albicans as a growth promoting factor for tuberculosis. Can. J. Microbiol. 5: 261–267.Google Scholar
  11. 11.
    Mankiewicz, E., and M. Liivak. 1960. Effect of Candida albicans on the evolution of experimental tuberculosis. Nature (London) 187: 250251.Google Scholar
  12. 12.
    Ferrante, A., and T. H. Thong. 1980. The effect of amphotericin B treatment on Candida albicans-induced imunosuppression in mice. Immunol. Lett. 1: 321–323.Google Scholar
  13. 13.
    Vardinon, N., and E. Segal. 1979. Suppressive action of Candida albicans on the immune system in mice. Exp. Cell. Biol. 47: 275–280.Google Scholar
  14. 14.
    Rogers, T., and E. Balish. 1978. Suppression of lymphocyte blastogenesis by Candida albicans. Clin. Immunol. Immunopathol. 10: 298305.Google Scholar
  15. 15.
    Rivas, V. and T. Rogers. 1983. Studies on the nature of albicans-induced suppression. Candida J. Immunol. 130: 376–379.Google Scholar
  16. 16.
    Cuff, C., C. Rogers, B. Lamb, suppressor cells in vitro by and T. Rogers. 1986. Induction of Candida albicans. Cell. Immunol. 100: 47–56.Google Scholar
  17. 17.
    Bruce, J. F. Symington, T. McKearn, and J. Sprent. 1981. A monoclonal antibody discriminating between subsets of T and B cells. J. Immunol. 127: 2496–2501.PubMedGoogle Scholar
  18. 18.
    Raychaudhuri, S., and M. Cancro. 1985. Cellular basis for neonatally induced T-suppressor activity. J. Exp. Med. 161: 816–829.Google Scholar
  19. 19.
    Smith, H., L. Jaffe, D. Kastner, and A. Steinberg. 1986. Evidence that Lyb-5 is a differentiation antigen in normal and xid mice. J. Immunol. 136: 1194–1200.PubMedGoogle Scholar
  20. 20.
    Piccolella, E., G. Lombardi, and R. Morelli. 1981. Generation of suppressor cells in the response of human lymphocytes to a polysaccharide from Candida albicans. J. Immunol. 126: 2151–2155.PubMedGoogle Scholar
  21. 21.
    Picolella, E., G. Lombardi, and R. Morelli. 1981. Mitogenic response of human peripheral blood lymphocytes to a purified C. albicans polysaccharide fraction: lack of helper activities is responsible for the in vitro unresponsiveness to a second antigenic challenge. J. Immunol. 126: 2156–2160.Google Scholar
  22. 22.
    Lombardi, G., D. Vismara, E. Picolella, V. Colizzi, and G. Asherson. 1985. Non-specific inhibitor produced by Candida albicans activated T-cells impairs cell proliferation by inhibiting interleukin-1 production. Clin. Exp. Immunol. 60: 303–310.Google Scholar
  23. 23.
    Mond, J., J. Farrar, W. Paul, J. Fuller-Farrar, M. Schaefer, and M. Howard. 1983. T-cell dependence and factor reconstitution of in vitro antibody responses to TNP-B. abortus and TNP-Ficoll: restoration of depleted responses with chromatographed fractions of a T-cell-derived factor. J. Immunol. 131: 633–637.PubMedGoogle Scholar
  24. 24.
    Mathur, S., J. Melchers III, E. Ades, H. Williamson, and H. Fudenberg. 1980. Anti-ovarian and anti-lymphocyte antibodies in patients with chronic vaginal candidiasis. J. Reprod. Immunol. 2: 247–262.Google Scholar
  25. 25.
    Fischer, A., J. Ballet, and C. Griscelli. 1978. Specific inhibition of in vitro Candida-induced lymphocyte proliferation by polysaccharide antigens present in the serum of patients with chronic mucocutaneous candidiasis. J. Clin. Invest. 62: 1005–1013.Google Scholar
  26. 26.
    Fischer, A., L. Pichat, M. Audinot, and C. Griscelli. 1982. Defective handling of mannan by monocytes in patients with chronic mucocutaneous candidiasis resulting in a specific cellular unresponsiveness. Clin. Exp. Immunol. 47: 653–660.Google Scholar
  27. 27.
    Piccolella, E., G. Lombardi, and R. Morelli. 1980. Human lymphocyte activating properties of a purified polysaccharide from Candida albicans: B and T cell cooperation in the mitogenic response. J. Immunol. 125: 2082–2088.PubMedGoogle Scholar
  28. 28.
    Carrow, E., and J. Domer. 1985. Immunoregulation in experimental murine candidiasis:specific suppression induced by Candida albicans cell wall glycoprotein. Infect. Immun. 49: 172–181.Google Scholar
  29. 29.
    Cassone, A., P. Marconi, F. Bistoni, E. Mattia, G. Sbaraglia, E. Garaci, and E. Bonmassar. 1981. Immunoadjuvant effects of Candida albicans and its cell wall fractions in a mouse lymphoma model. Clin. Immunol. Immunother. 10: 181–190.Google Scholar
  30. 30.
    Smail, E. and J. Jones. 1984. Demonstration and solubilization of antigens expressed primarily on the surfaces of Candida albicans germ tubes. Infect. Immun. 45: 74–81.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Christopher F. Cuff
    • 1
    • 2
  • Beryl Packer
    • 1
    • 2
  • Victor Rivas
    • 1
    • 2
  • Christina M. Rogers
    • 1
    • 2
  • Antonio Cassone
    • 1
    • 2
  • Raymond Donnelly
    • 1
    • 1
  • Thomas J. Rogers
    • 1
    • 2
  1. 1.Department of Microbiology and ImmunologyTemple University School of MedicinePhiladelphiaUSA
  2. 2.Instituto Superiore di SanitaLaboratory of Bacteriology and Medical MycologyRomeItaly

Personalised recommendations