Genetic Basis of Host Resistance and Susceptibility to Intracellular Pathogens

  • Emil Skamene
  • Adrien Forget
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 239)


History provides numerous examples of variable susceptibility of human populations to viral, bacterial and parasitic infections, both during epidemics and in the endemic areas of the world. Although the influence of environmental factors must be considered in any explanation of such variability, it has recently become clear, mainly on the basis of studying experimental infections in inbred animals, that genetic factors play decisive role in individual susceptibility.


Visceral Leishmaniasis Host Resistance Intracellular Pathogen Recombinant Inbred Inbred Mouse Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gowen, J.W. 1960. Genetic effects in nonspecific resistance to infectious disease. Bact. Rev. 24: 192–200.Google Scholar
  2. 2.
    Forget, A., E. Skamene, P. Gros, A.C. Miailhe, and R. Turcotte. 1981. Strain differences in the response to infection with small dispersed doses of Mycobacterium bovis BCG among inbred mice. Infect. Immun. 32: 42–48.Google Scholar
  3. 3.
    Denis, M., A. Forget, M. Pelletier, R. Turcotte, and E. Skamene. 1986. Control of the Bcg gene of early resistance in mice to infections with BCG substrains and atypical mycobacteria. Clin. exp. Immunol. 63: 517–525.Google Scholar
  4. 4.
    Nickonenko, B.V., A.S. Apt, A.M. Moroz and M.M. Averbakh. 1985. Genetic analysis of susceptibility of mce to H37RV tuberculosis infection: Sensitivity versus relative resistance. Prog. Leukocyte Biol. 3: 291–298.Google Scholar
  5. 5.
    Gros, P., E. Skamene, and A. Forget. 1981. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J. Immun. 127: 2417–2423.Google Scholar
  6. 6.
    Curtis, J., C.F. Curtis, and N.H. Barton. 1985. Methodology for testing the hypothesis of single locus control of host resistance. Prog. Leukocyte Biol. 3: 65–70.Google Scholar
  7. 7.
    McCall, R.D. 1985. A maximum likelihood alternative to genetic analysis of quantitative immunologic data from inbred strains. Prog. Leukocyte Biol. 3: 71–81.Google Scholar
  8. 8.
    Plant, J., and A.A. Glynn. 1979. Locating Salmonella resistance gene on mouse chromosome 1. Clin. exp. Immunol. 37: 1–6.Google Scholar
  9. 9.
    Skamene, E., A. Forget, P. Gros, and P.A.L. Kongshavn. 1982. Chromosome 1 locus: a major regulator of natural resistance to intracellular pathogens. p. 313–318. In R.B. Herberman (ed). NK cells and other natural effector cells. Academic Press, New York.CrossRefGoogle Scholar
  10. 10.
    Bradley, D.J., B.A. Taylor, J.M. Blackwell, E.P. Evans, and J. Freeman. 1979. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp. Immunol. 37: 7–14.Google Scholar
  11. 11.
    Skamene, E., P. Gros, A. Forget, P.A.L. Kongshavn, C. St. Charles, and B.A. Taylor. 1982. Genetic regulation of resistance to intracellular pathgens. Nature 297: 506–510.PubMedCrossRefGoogle Scholar
  12. 12.
    Mock, B.A., E. Russek-Cohen, J. Hilgers, and C.A. Nacy. 1985. Discriminant function analysis of genetic traits associated with Leishmania major infection in the CXS recombinant inbred strains. Prog. Leukocyte Biol. 3: 83–95.Google Scholar
  13. 13.
    Briles, D.E., W.H. Benjamin, W.J. Huster, and B. Posey. 1986. Genetic approaches to the study of disease resistance, with special emphasis on the use of recombinant inbred mice. Curr. Top. Microbiol. Immunol. 124: 21–36.Google Scholar
  14. 14.
    Potter, M., and J.S. Wax. 1981. Litton Bionetics Report. Mouse News Letter 64: 62.Google Scholar
  15. 15.
    Potter, M., A. O’Brien, E. Skamene, P. Gros, A. Forget, P.A.L. Kongshavn, and J.S. Wax. 1983. A BALB/c congenic strain of mice that carries a genetic locus (Ityr) controlling resistance to intracellular parasites. Infect. Immun. 40: 1234–1235.Google Scholar
  16. 16.
    Watson, J., K. Kelly, M. Largen, and B.A. Taylor. 1978. The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J. Immunol. 120: 422–424.PubMedGoogle Scholar
  17. 17.
    O’Brien, A.D., D.L. Rosenstreich, I. Scher, G.H. Campbell, R.P. MacDermott, and S.B. Formal. 1980. Genetic control of susceptibility to Salmonella typhimurium in mice: Role of the LPS gene. J. Immunol. 124: 20–24.Google Scholar
  18. 18.
    Haller, 0. 1981. Inborn resistance of mice to orthomyxoviruses. Curr. Top. Microbiol. Immunol. 92: 25–52.Google Scholar
  19. 19.
    O’Brien, A.D., and D.L. Rosenstreich. 1983. Genetic control of the susceptibility of C3HeB/FeJ mice to Salmonella typhimurium is regulated by a locus distinct from known Salmonella response genes. J. Immunol. 131: 2613–2615.PubMedGoogle Scholar
  20. 20.
    Swanson, R.N., and A.D. O’Brien. 1983. Genetic control of the innate resistance of mice to Salmonella typhimurium: Ity gene is expressed in vivo by 24 hours after infection. J. Immunol. 131: 3014–3020.PubMedGoogle Scholar
  21. 21.
    Gros, P., E. Skamene, and A. Forget. 1983. Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG). J. Immunol. 131: 1966–1972.PubMedGoogle Scholar
  22. 22.
    Stach, J-L., P. Gros, A., Forget, and E. Skamene. 1984. Phenotypic expression of genetically-controlled natural resistance to Mycobacterium bovis (BCG). J. Immunol. 132: 888–892.Google Scholar
  23. 23.
    Stokes, R.W., I.M. Orme, I.M., and F. Collins. 1986. Role of mononuclear phagocytes in expression of resistance and susceptibility to Mycobacterium avium infection in mice. Infect. Immun. 54: 811–819.Google Scholar
  24. 24.
    Lissner, C.R., R.N. Swanson, and A.D. O’Brien. 1983. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages in vitro. J. Immunol. 131: 3006–3013.PubMedGoogle Scholar
  25. 25.
    van Dissel, J.T., J.J.M. Stikkelbroeck, W. Sluiter, P.C.J. Leijh, and R. van Furth. 1985. Course of an intraperitoneal inflammation during a Salmonella typhimurium infection in Salmonella-resistant CBA and Salmonella-susceptible C57BL/10 mice. Prog. Leukocyte Biol. 3: 245–255.Google Scholar
  26. 26.
    Crocker, P.R., J.M. Blackwell, and D.J. Bradley. 1984. Expression of the natural resistance gene Lsh in resident liver macrophages. Infect. Immun. 43: 1033–1040.Google Scholar
  27. 27.
    Zwilling, B.S., S. Johnson, L. Vespa, and M. Kwasniewski. 1985. BCG infection induces continuous I-A expression in BCG resistant mice. Prog. Leukocyte Biol. 3: 299–304.Google Scholar
  28. 28.
    Denis, M., E. Buschman, A. Forget, M. Pelletier, and E. Skamene, 1986. Pleiotropic effects of the Bcg gene: Regulation of la dependent macrophage functions (Abstract). 6th International Congress of Immunology, Toronto.Google Scholar
  29. 29.
    Denis, M., A. Forget, M. Pelletier, A. Jodoin, and E. Skamene. 1987. Pleiotropic effects of the Bcg gene. I. Antigen-presentation in genetically - susceptible and resistant congenic mouse strains. J. Immunol. submitted.Google Scholar
  30. 30.
    Denis, M., A. Forget, A. Jodin, M. Pelletier, and E. Skamene. 1987. Pleiotropic effects of the Bcg gene. I I. Genetic restriction of non-specific mitogenesis. J. Immunol. submitted.Google Scholar
  31. 31.
    Denis, M., A. Forget, M. Pelletier, and E. Skamene. 1987. Pleiotropic effects of the BCG gene. I II. Hydrogen peroxide production in BCG - congenic mice. Clin. Exp. Immunol. submitted.Google Scholar
  32. 32.
    Denis, M., A. Forget, A. Jodoin, E. Skamene, and M. Pelletier. 1987. Pleiotropic effects of the Bcg gene. I V. Listericidal activity of Bcgr and Bcgs macrophages. Infect. & Immunol. submitted.Google Scholar
  33. 33.
    Meltzer, M.S., and C.A. Nacy. 1985. Macrophage cytotoxicity against tumor cell and microbial targets: Genetic control of the activation network. Prog. Leukocyte Biol. 3: 595–604.Google Scholar
  34. 34.
    Blackwell, J.M. 1983. Regulation of Leishmania populations within the host. V. Resistance to L. donovani in wild mice. J. Trop. Med. Hyg. 86: 17–22.Google Scholar
  35. 35.
    Lurie, M.B. 1964. Resistance to tuberculosis: experimental studies in native and acquired defensive mechanisms. Harvard University Press, Cambridge.Google Scholar
  36. 36.
    Skamene, E. 1986. Genetic control of resistance to mycobacterial infection. Curr. Topics Microbiol. Immunol. 124: 49–66.Google Scholar
  37. 37.
    Cohen, D.I., S.M. Hedrick, E.A. Nielsen, P. D’Eustachio, F. Ruddle, A.D. Steinberg, W.E. Paul, and M.M. Davis. 1985. Isolation of cDNA clone corresponding to an X-linked gene family ( XLR) closely linked to the murine immunodeficiency disorder. Nature 314: 369–372.Google Scholar
  38. 38.
    Staeheli, P., 0. Haller, W. Boll, J. Lindenmann, and C. Weissmann. 1986. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44: 147–158.Google Scholar
  39. 39.
    Housman, D.E., P. Gros. 1985. Isolation of host resistance genes: A general strategy based on recombinant DNA and genetic linkage techniques. Prog. Leukocyte Biol. 3: 101–107.Google Scholar
  40. 40.
    Skow, L.C. 1982. Location of a gene controlling electrophoretic variation in mouse y-1 crystallins. Exp. Eye Res. 34: 509–516.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Emil Skamene
    • 1
  • Adrien Forget
    • 2
  1. 1.Division of Clinical Immunology and AllergyMontreal General HospitalMontrealCanada
  2. 2.Department of Microbiology and ImmunologyUniversity of MontrealMontrealCanada

Personalised recommendations