Advertisement

Pulsations of Cavitation Voids

  • V. A. Akulichev
Part of the Ultrasonic Technology book series (ULTE)

Abstract

All effects observed in connection with ultrasonic cavitation, such as cavitation erosion, sonoluminescence, cavitation noise, and the initiation of chemical reactions, are related to the existence and characteristic behavior of cavitation voids in an intense ultrasonic wave field. This makes the investigation of the motion of cavitation bubbles or voids one of the central problem areas of ultrasonic cavitation research.

Keywords

Shock Wave Phase Portrait Cavitation Bubble Pressure Amplitude Ultrasonic Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Y. Hsieh and M. S. Plesset, Theory of rectified diffusion of mass into gas bubbles, J. Acoust. Soc. Am., 33 (2): 206 (1961).MathSciNetGoogle Scholar
  2. 2.
    A. Kapustina and Yu. G. Statnikov, Influence of acoustic microstreaming on the mass transfer in a gas bubble— liquid system, Akust. Zh., 13 (3): 383 (1967).Google Scholar
  3. 3.
    W. Güth, Kinematographische Aufnahmen von Wasserdampfblasen [Motion pictures of water vapor bubbles], Acustica, 4 (5): 445 (1954).Google Scholar
  4. 4.
    A. T. Ellis, Techniques for Pressure Pulse Measurements and High-Speed Photography in Ultrasonic Cavitation, Cavitation in Hydrodynamics, London (1956).Google Scholar
  5. 5.
    E. Mandry and W. Guth, Kinematographische Untersuchungen der Schwingungskavítation [Motion picture studies of vibration-induced cavitation], Acustica, 7 (4): 241 (1957).Google Scholar
  6. 6.
    I. Schmid, Kinematographische Untersuchung der Einzelblasen-Kavitation [Motion picture investigation of the individual cavitation bubble], Acustica, 9 (4): 321 (1959).Google Scholar
  7. 7.
    M. Kornfel’d, Elasticity and Strength’of Liquids, Moscow-Leningrad (1951).Google Scholar
  8. 8.
    W. G ith, Zur Entstehung der Stosswellen bei der Kavitation [Formation of shock waves in cavitation], Acustica, 6(6):526 (1956).Google Scholar
  9. 9.
    H. Lamb, Hydrodynamics, New York (1945).Google Scholar
  10. 10.
    Rayleigh, On pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34: 94 (1917).MATHGoogle Scholar
  11. 11.
    B. E. Noltingk and E. A.Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 63B: 675 (1950)Google Scholar
  12. B. E. Noltingk and E. A.Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 648: 1032 (1951).Google Scholar
  13. 12.
    H. G. Flynn, Physics of Acoustic Cavitation in Liquids, Physical Acoustics (W. P. Mason, ed), Vol. 1B, Academic Press, New York (1964).Google Scholar
  14. 13.
    M. I. Vorotnikova and R. I. Soloukhin, A calculation of the pulsations of gas bubbles in an incompressible liquid subject to a periodically varying pressure, Akust. Zh., 10 (1): 34 (1964).Google Scholar
  15. 14.
    L. Trilling, The collapse and rebound of a gas bubble, J. Appt. Phys., 23 (1): 14 (1952).MathSciNetCrossRefGoogle Scholar
  16. 15.
    C. Herring, Theory of the Pulsation of the Gas Bubbles Produced by an Underwater Explosion, OSRD Rept. No. 236 (1941).Google Scholar
  17. 16.
    R. H. Cole, Underwater Explosions, Princeton Univ. Press (1948).Google Scholar
  18. 17.
    F. R. Gilmore,TheGrowthorCollapse of a Spherical Bubble in a Viscous Compressible Fluid, California Inst. Technology Rept. No. 26–4 (1952).Google Scholar
  19. 18.
    M. Minnaert, On musical air-bubbles and the sounds of running water, Phil. Mag., 16 (17): 235 (1933).Google Scholar
  20. 19.
    W. Y. Cunningham, Introduction to Nonlinear Analysis, New York (1958).Google Scholar
  21. 20.
    M. G. Sirotyuk, On the behavior of cavitation bubbles at large ultrasonic intensities, Akust. Zh., 7 (4): 499 (1961).Google Scholar
  22. 21.
    A. A. Andronov, A. V. Vitt, and S. Z. Khaikin, Theory of Oscillations, Moscow (1953).Google Scholar
  23. 22.
    A. A. Andronov, Mathematical problems in the theory of self-sustained oscillations, Collected Works, Izd. AN SSSR (1956).Google Scholar
  24. 23.
    J. J. Stoker, Nonlinear Vibration in Mechanical and Electrical Systems, New York (1950).Google Scholar
  25. 24.
    M. Strasberg, Onset of ultrasonic cavitation in tap water, J. Acoust. Soc. Am., 31 (2): 163 (1959).CrossRefGoogle Scholar
  26. 25.
    M. G. Sirotyuk,Energetics and dynamics of the cavitation zone, Akust. Zh., 13 (2): 265 (1967).Google Scholar
  27. 26.
    L. A. Glikman, V.P. Tékt, and Yu. E. Zabachev, On the physical nature of cavitation destruction, Zh. Tekh. Fiz., 25 (2): 280 (1955).Google Scholar
  28. 27.
    E. Meyer, High-Intensity Sound in Liquids, Underwater Acoustics (V. M. Albers, ed.), Plenum Press, New York (1961), pp. 139–158.Google Scholar
  29. 28.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Moscow (1953).Google Scholar
  30. 29.
    V. A. Akulichev, Yu. Ya. Boguslayskii, A. I. Ioffe, and K. A A. Naugol’nykh, Radiation of finite-amplitude spherical waves, Akust. Zh., 13 (3): 321 (1967).Google Scholar
  31. 30.
    R. H. Mellen, An experimental study of the collapse of a spherical cavity in water, J. Acoust. Soc. Am., 28 (3): 447 (1956).CrossRefGoogle Scholar
  32. 31.
    R. T. Knapp, Recent investigation of the mechanics of cavitation and cavitation damage, Trans. ASME (Annual Meeting), p. 106 (1954).Google Scholar
  33. 32.
    M. G. Sirotyuk, Effect of the temperature and gas content of the liquid on cavitation processes, Akust. Zh., 12 (1): 87 (1966).Google Scholar
  34. 33.
    T. Lange, Methoden zur Untersuchung der Schwingungskavitation in Flüssigkeiten mit Ultraschall [Methods for the investigation of vibration-induced cavitation in liquids with ultrasound], Akust. Beih., 2: 75 (1952).Google Scholar
  35. 34.
    G. W. Willard, Ultrasonically induced cavitation in water, J. Acoust. Soc. Am., 25 (4): 667 (1953).MathSciNetCrossRefGoogle Scholar
  36. 35.
    L. O. Makarov and L. D. Rozenberg, On the mechanism of ultrasonic cleaning, Akust. Zh., 3 (4): 37 (1957).Google Scholar
  37. 36.
    M. G. Sirotyuk, Experimental investigation of the growth of ultrasonic cavitation at 500 kc, Akust. Zh., 8 (2): 216 (1962).Google Scholar
  38. 37.
    G’. G. Malkin, Selected Problems in the Theory of Nonlinear Oscillations, Moscow (1956).Google Scholar
  39. 38.
    G. T. Macfarlane, On the energy spectrum of an almost-periodic succession of pulses, Proc. IRE, 37: 1139 (1949).CrossRefGoogle Scholar
  40. 39.
    L. Bohn, Schalldruckverlauf und Spektrum bei der Schwingungskavitation [Sound pressure variation and spectrum of vibration-induced cavitation], Akust. Beih., 2: 201 (1952).Google Scholar
  41. 40.
    R. Esche, Untersuchung der Schwingungskavitation in’Flüssigkeiten [Investigation of vibration-induced cavitation in liquids], Akust. Beih., 4: 208 (1952).Google Scholar
  42. 41.
    Y. Kikuchi (ed.), Engineering Aspects of Ultrasonic Cavitation, Research Group of Ultrasonic Cavitation, Japan (1961).Google Scholar
  43. 42.
    V. A. Akulichev and V. I. Il’ichev, Spectral indication of the origin of ultrasonic cavitation in water, Akust. Zh., 9 (2): 158 (1963).Google Scholar
  44. 43.
    R. Hickling and M. S. Plesset, Collapse and rebound of a spherical bubble in water, Phys. Fluids, 7 (1): 7 (1964).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • V. A. Akulichev

There are no affiliations available

Personalised recommendations