Acoustic Streaming

  • L. K. Zarembo
Part of the Ultrasonic Technology book series (ULTE)


Sound at high intensity levels in gases and liquids is accompanied by stationary (time-independent) flows known as acoustic streaming (other terms encountered in the literature are “acoustic wind” or “quartz wind”). These flows occur either in a free nonuniform sound field or (particularly) near various types of obstacles immersed in a sound field or near oscillating bodies. They are always of a rotational character. Their velocity increases with the sound intensity, but, even at the highest intensities currently available, the velocity remains smaller than the particle velocity in the sound wave.


Stream Velocity Sound Field Acoustic Streaming Sound Beam Acoustic Wavelength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. Nyborg, Acoustic streaming, Physical Acoustics (W. P. Mason, ed.), Voi. 2, Part B, Academic Press, New York (1965).Google Scholar
  2. 2.
    H. Medwin and I. Rudrik, Surface and volume sources of vorticity in acoustic fields, J. Acoust. Soc. Am., 25 (3): 538 (1953).CrossRefGoogle Scholar
  3. 3.
    P. J. Westervelt, The theory of steady rotational flow generated by sound fields, J. Acoust. Soc. Am., 25(1): 60, 799 (1953).CrossRefGoogle Scholar
  4. 4.
    C. Eckart, Vortices and streams caused by sound waves, Phys. Rev., 73 (1): 68 (1948).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Yu. G. Statnikov, Streaming induced by finite-amplitude sound, Akust. Zh., 13 (1): 146 (1967).Google Scholar
  6. 6.
    E. N. Libermann, Second viscosity of liquids, Phys. Rev., 75 (9): 1415 (1949).CrossRefGoogle Scholar
  7. 7.
    F. E. Fox and K. T. Herzfeld, On the forces producing the ultrasonic wind, Phys. Rev., 78 (2): 156 (1950).MATHCrossRefGoogle Scholar
  8. 8.
    F. E. Borgnis, Theory of acoustic radiation pressure, Rev. Mod. Phys., 25 (3): 653 (1953).MATHCrossRefGoogle Scholar
  9. 9.
    W. Cady and C. Gittings, On the measurement of power radiated from an acoustic source, J. Acoust. Soc. Am., 25 (5): 892 (1953).CrossRefGoogle Scholar
  10. 10.
    E. M. J. Herrey, Experimental studies on acoustic radiation pressure, J. Acoust. Soc. Am., 27 (5): 891 (1955).CrossRefGoogle Scholar
  11. 11.
    I. Johnsen and S. Tjötta, Eine theoretische und experimentalle Untersuchung ilber den Quartzwind [A theoretical and experimental study of the quartz wind], Acustica, 7 (l): 7 (1957).Google Scholar
  12. 12.
    S. Tjötta, Steady rotational flow generated by a sound beam, J. Acoust. Soc. Am., 29 (4): 455 (1957).CrossRefGoogle Scholar
  13. 13.
    W. L. Nyborg, Acoustic streaming due to attenuated plane waves, J. Acoust. Soc. Am., 25 (1): 68 (1953).MathSciNetCrossRefGoogle Scholar
  14. 14.
    K. A. Naugol’nykh, On sonically induced streaming, Dokl. Akad. Nauk SSSR, 123 (6): 1003 (1958).Google Scholar
  15. 15.
    A. I. Ivanovskii, Theoretical and Experimental Investigation of Sonically Induced Streaming, Gidrometeoizdat (1959).Google Scholar
  16. 16.
    P. J. Westervelt, The mean pressure and velocity in a plane acoustic wave in a gas, J. Acoust. Soc. Am., 22 (3): 319 (1950).MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. D. Fay, Plane sound waves of finite amplitude, J. Acoust. Soc. Am., 3 (2): 222 (1931).CrossRefGoogle Scholar
  18. 18.
    Rayleigh (J. W. Strutt), The Theory of Sound, Vol. 2, McGraw-Hill, New York (1948), p. 352.Google Scholar
  19. 19.
    K. Schuster and W. Matz, Ober stationare Strömungen in Kundtsche Rohr [On stationary streaming in Kundt tubes], Akust. Z., 5; 349 (1940).Google Scholar
  20. 20.
    Yu. Ya. Borisov and Yu. G. Statnikov, Flow currents generated in an acoustic standing wave, Akust. Zh., 11 (1): 35 (1965).Google Scholar
  21. 21.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Gostekhizdat (1954).Google Scholar
  22. 22.
    H. Schlichting, Berechnung ebener periodischer Grenzschichts Strömungen [Calculation of plane periodic boundary-layer streaming], Phys. Z., 33 (8): 327 (1932).Google Scholar
  23. 23.
    H. Schlichting, Grenzschicht-Theorie [Boundary-Layer Theory], Brann, Karlsruhe (1951).Google Scholar
  24. 24.
    W. L. Nyborg, Acoustic streaming near a boundary, J. Acoust. Soc. Am., 30 (4): 329 (1958).MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. M. Andres and U. Ingard, Acoustic streaming at high Reynolds numbers, J. Acoust. Soc. Am., 25 (5): 928 (1953).CrossRefGoogle Scholar
  26. 26.
    J. M. Andres and U. Ingard, Acoustic streaming at low Reynolds numbers, J. Acoust. Soc. Am., 25 (5): 932 (1953).CrossRefGoogle Scholar
  27. 27.
    J. Holzmark, I. Johnsen, T. Sikkeland, and S. Skavlem, Boundary layer flow near a cylindrical obstacle in an oscillating incompressible fluid, J. Acoust. Soc. Am., 26 (1): 26 (1954).CrossRefGoogle Scholar
  28. 28.
    W. P. Raney, J. C. Corelli, and P. J. Westervelt, Acoustic streaming in the vicinity of a cylinder, J. Acoust. Soc. Am., 26 (6): 1006 (1954).CrossRefGoogle Scholar
  29. 29.
    C. M. A. Lane, Acoustical streaming in the vicinity of a sphere, J. Acoust. Soc. Am., 27 (6): 1123 (1953).Google Scholar
  30. 30.
    M. Carriere, Analyse ultramicroscopique des vibrations aeriennes [Ultramicroscopic analysis of air vibrations], J. Phys. Radium, 10 (5): 198 (1929).MATHCrossRefGoogle Scholar
  31. 31.
    P. J. Westervelt, Acoustic streaming near a small obstacle, J. Acoust. Soc. Am., 25 (6): 1123 (1953).MathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Skavlem and S. Tjötta, Steady rotational flow of an incompressible viscous fluid enclosed between two coaxial cylinders, J. Acoust. Soc. Am., 27 (1): 26 (1955).CrossRefGoogle Scholar
  33. 33.
    Yu. G. Statnikov, Microstreaming about a gas bubble in a liquid, Akust. Zh., 13 (3): 464 (1967).Google Scholar
  34. 34.
    E. V. Romanenko, Experimental investigation of acoustic streaming in water, Akust. Zh., 6 (1): 92 (1960).Google Scholar
  35. 35.
    E. G. Richardson, Acoustic experiment relating to the coefficients of viscosity of various liquids, Proc. Roy. Soc., A226 (1164): 16 (1954).CrossRefGoogle Scholar
  36. 36.
    Yu. Ya. Borisov and Yu. G. Statnikov, Measurement of boundary layer thickness in the presence of a sound field, Akust. Zh., 12 (3): 372 (1966).Google Scholar
  37. 37.
    G: Spengler, Über den Einfluss des “Quartzwindes” auf Ultraschalleistungmessungen [Influence of the “quartz wind” on ultrasonic power measurements], Naturwissenschaften, 41: 59 (1954).CrossRefGoogle Scholar
  38. 38.
    E. N. Andrade, On the circulation caused by the vibration of air in a tube, Proc. Roy. Soc., A134 (824): 445 (1931).CrossRefGoogle Scholar
  39. 39.
    A. M. Gabrial and E. G. Richardson, A study of acoustic streaming in liquids over a wide frequency range, Acustica, 5 (1): 28 (1955).Google Scholar
  40. 40.
    C. L. Damer and E. N. Laid, “Quartz wind” formation time, J. Acoust. Soc. Am., 26 (1): 104 (1954).Google Scholar
  41. 41.
    L. K. Zarembo and V. V. Shklovskaya-Kordi, Visualization of acoustic streaming at the boundary of two immiscible liquids, Akust. Zh., 3 (4): 373 (1957).Google Scholar
  42. 42.
    J. D. West, Circulation occurring in acoustic phenomena, Proc. Phys. Soc., B64 (378): 483 (1951).Google Scholar
  43. 43.
    U. Ingard and S. Labate, Acoustic circulation effects and the nonlinear im- pedance of orifices, J. Acoust. Soc. Am., 22 (2): 211 (1950).CrossRefGoogle Scholar
  44. 44.
    S. A. Elder, Cavitation microstreaming, J. Acoust. Soc. Am., 31 (1): 54 (1959).CrossRefGoogle Scholar
  45. 45.
    J. Kolb and W. L. Nyborg, Small-scale acoustic streaming in liquids, J. Acoust. Soc. Am., 28 (6): 1237 (1956).CrossRefGoogle Scholar
  46. 46.
    W. L. Nybcrg, R. K. Gould, F. J. Jackson, and C. E. Adams, Sonically induced microstreaming applied to a surface reaction, J. Acoust. Soc. Am., 31 (6): 706 (1959).CrossRefGoogle Scholar
  47. 47.
    I. M. Faikin and I. E. Él’piner, Onset of emulsification processes due to microstreaming induced by an ultrasonic field, Akust. Zh., 11 (1): 126 (1965).Google Scholar
  48. 48.
    I. E. É1’piner, Recent advances in ultrasonic biophysics, Usp. Sovrem. Biol., 61 (2): 212 (1966).Google Scholar
  49. 49.
    I. E. Él’piner, I. M. Faikin, and O. K. Basurmanova, Intracellular micro-streaming induced by ultrasonic waves, Biofizika, 10 (5): 805 (1965).Google Scholar
  50. 50.
    M. I. Gol’din, I. M. Faikin, and I.E. Él’piner, Microstreaming induced by ultrasonic waves in plant cells containing tobacco mosaic virus injections, Dokl. Akad. Nauk SSSR, 166 (5): 1221 (1966).Google Scholar
  51. 51.
    F. Y. Jackson and W. L. Nyborg, Microscopic eddying neat a vibrating ultrasonic tool tip, J. Appl. Phys., 30 (6): 949 (1959).CrossRefGoogle Scholar
  52. 52.
    F. Y. Jackson, Sonically induced microstreaming near a plane boundary, II, Acoustic streaming field, J. Acoust. Soc. Am., 32 (11): 1387 (1960).CrossRefGoogle Scholar
  53. 53.
    T. M. Dauphinee, Acoustic air pump, Rev. Sci. Instr., 28 (6): 452 (1957).CrossRefGoogle Scholar
  54. 54.
    H. Medwin, Acoustic streaming experiment in gases, J. A coust. Soc. Am., 26 (3): 332 (1954).CrossRefGoogle Scholar
  55. 55.
    E. W. Samuel and R. S. Shankland, The sound field of a Straubel X-cut crystal, J. Acoust. Soc. Am., 22 (5): 589 (1950).CrossRefGoogle Scholar
  56. 56.
    S. M. Karim and L. Rosenheed, Second coefficient of viscosity of liquids and gases, Rev. Mod. Phys., 24 (2): 108 (1952).CrossRefGoogle Scholar
  57. 57.
    J. E. Piercy and J. Lamb, Acoustic streaming in liquids, Proc. Roy. Soc., A226 (1164): 43 (1954).MathSciNetCrossRefGoogle Scholar
  58. 58.
    D. N. Hall and J. Lamb, Measurement of ultrasonic absorption in liquids by the observation of acoustic streaming, Proc. Phys. Soc., 75: 354 (1959).CrossRefGoogle Scholar
  59. 59.
    S. M. Karim, Second viscosity coefficient of liquids, J. Acoust. Sod. Am., 25 (5): 997 (1953).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • L. K. Zarembo

There are no affiliations available

Personalised recommendations