Advertisement

Absorption of Finite-Amplitude Waves

  • K. A. Naugol’nykh
Part of the Ultrasonic Technology book series (ULTE)

Abstract

Normally in acoustics one is concerned with sound waves of small amplitude in the sense that the perturbations elicited by these waves in the equilibrium state of the medium are small. The propagation of such waves is described in terms of approximate equations derived by linearization of the hydrodynamic equations and equation of state. This, the so-called linear-acoustical approximation, proves inadequate for the case of sound waves of large intensity, which are being encountered on a growing scale in present-day engineering.

Keywords

Plane Wave Shock Front Sound Wave Wave Intensity Sound Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Moscow (1954).Google Scholar
  2. 2.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Effects, Moscow (1965).Google Scholar
  3. 3.
    I. G. Mikhailov, V. A. Solov’ev, and Yu. Syrnikov, Fundamentals of Molecular Acoustics, Izd. “Nauka” (1964).Google Scholar
  4. 4.
    L. K. Zarembo and V. A. Krasil’nikov, Certain aspects of the propagation of finite-amplitude ultrasonic waves in liquids, Usp. Fiz. Nauk, 18 (4): 688 (1959).Google Scholar
  5. 5.
    M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, in: Survey in Mechanics, Cambridge (1956).Google Scholar
  6. 6.
    L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics, Izd. “Nauka” (1966).Google Scholar
  7. 7.
    G. A. Ostroumov, Lectures on Nonlinear Acoustics, Izd. Leningrad. Univ. (1966).Google Scholar
  8. 8.
    K. A. Naugol’nykh, Absorption of sound waves of finite amplitude, Akust. Zh., 4 (2): 115 (1958).Google Scholar
  9. 9.
    R. T. Beyer, Physical Acoustics (W. P. Mason, ed.), Vol. 2B, Academic Press, New York—London (1965).Google Scholar
  10. 10.
    Z. A. Gol’dberg, Propagation of finite-amplitude plane waves, Akust. Zh., 3 (4): 322 (1957).Google Scholar
  11. 11.
    D. T. Blackstock, Theoretical analysis of propagation of sound waves containing shocks, J. Acoust. Soc. Am., 36 (5): 1032 (1964).CrossRefGoogle Scholar
  12. 12.
    Z. A. Goldberg, Propagation of plane sound waves of finite amplitude in a viscous heat-conducting medium, Akust. Zh., 5 (1): 118 (1959).Google Scholar
  13. 13.
    K. A. Naugol’nykh, Propagation of spherical sound waves of finite amplitude in a viscous heat-conducting medium, Akust. Zh., 5 (1): 80 (1959).MathSciNetGoogle Scholar
  14. 14.
    V. V. Shklovskaya-Kcrdi, Acoustical method of determining the internal pressure in liquids, Akust. Zh., 9 (11): 107 (1963).Google Scholar
  15. 15.
    J. S. Mendousse, Nonlinear dissipative distortion of progressive sound waves at moderate amplitudes, J. Acoust. Soc. Am., 25 (1): 51 (1953).CrossRefGoogle Scholar
  16. 16.
    S. I. Soluyan and R. V. Khokhlov, Propagation of finite-amplitude sound waves in a dissipative medium, Vest. MGU, Ser. III, Fizika i Astronomiya, 3: 52 (1961).Google Scholar
  17. 17.
    D. T. Blackstock, Thermoviscous attenuation of plane, periodic finite amplitude sound waves, J. Acoust. Soc. Am., 36 (3): 534 (1964).CrossRefGoogle Scholar
  18. 18.
    J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9 (3): 225 (1951).MATHGoogle Scholar
  19. 19.
    B. D. Cook, New procedure for computing finite amplitude distortion, J. Acoust. Soc. Am., 34 (7): 941 (1962).CrossRefGoogle Scholar
  20. 20.
    W. Keck and R. T. Beyer, Frequency spectrum of finite amplitude ultrasonic waves in liquids, Phys. Fluids, 3: 346 (1960).MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. T. Blackstock, Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude, J. Acoust. Soc. Am., 39 (6): 1019 (1966).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    G. C. Werth, Attenuation of repeated shock waves in tubes, J. Acoust. Soc. Am., 25: 821 (1953).CrossRefGoogle Scholar
  23. 23.
    V. A. Burov and V. A. Krasil’nikov, Direct observation of the distortion of intense ultrasonic waves in a liquid, Dokl. Akad. Nauk SSSR, 118: 920 (1958).Google Scholar
  24. 24.
    E. V. Romanenko, Experimental Investigation of the Propagation of Finite-Ampli tude Waves in a Liquid (Candidate’s Dissertation), Akust. Inst., Moscow (1962).Google Scholar
  25. 25.
    I. Rudnick, On the attenuation of a repeated sawtooth shock wave, J. Acoust. Soc. Am., 25 (5): 1012 (1953).MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. D. Poisson, Mémoire sur la théorie du son [Note on the theory of sound], J. École Polit. (Paris), 7: 364 (1808).Google Scholar
  27. 27.
    B. Riemann, Über die Fortpflanzung der Luftwellen endlicher Schwingungsweite [Propagation of Airborne Waves of Infinite Amplitude], Göttingen. Abhandl., 8 (1860).Google Scholar
  28. 28.
    D. T. Blackstock, Propagation of plane sound waves of finite amplitude in nondissipative fluids, J. Acoust. Soc. Am., 34 (9) (1962).Google Scholar
  29. 29.
    H. Lamb, Dynamic Theory of Sound, Arnold, London (1931).Google Scholar
  30. 30.
    G. Fubini, Pressione di radiatione acustica i onde di grande ampierra [Acoustic radiation pressure in large-amplitude waves], Alta Frequenza, 4: 530 (1935).Google Scholar
  31. 31.
    L. E. Hargrove, Fourier series for the finite amplitude sound waveform in a dissipationless medium, J. Acoust. Soc. Am., 32: 511 (1960).CrossRefGoogle Scholar
  32. 32.
    D. T. Blackstock, Convergence of the Keck-Beyer perturbation solution for plane waves of finite amplitude in a viscous fluid, J. Acoust. Soc. Am., 39 (2): 411 (1966).MathSciNetCrossRefGoogle Scholar
  33. 33.
    A. L. Thuras and R. T. Jenkins, Extraneous frequencies generated in air carrying intense sound waves, J. Acoust. Soc. Am., 6: 173 (1935).MATHCrossRefGoogle Scholar
  34. 34.
    O. N. Geertseen, A Study of Finite Amplitude Distortion of a Sound Wave in Air, Univ. California Techn. Rept., I II (1951).Google Scholar
  35. 35.
    R. D. Fay, Plane sound waves of finite amplitude, J. Acoust. Soc. Am., 3: 222 (1931).CrossRefGoogle Scholar
  36. 36.
    L. K. Zarembo, V. A. Krasil’nikov, and V. V. Shklovskaya-Kordi, Distortion of a finite-amplitude ultrasonic waveform in a liquid, Dokl. Akad. Nauk SSSR, 109 (3): 484 (1956).Google Scholar
  37. 37.
    I. G. Mikhailov and V. A. Shutilov, Distortion of the finite-amplitude ultrasonic waveform in various liquids, Akust. Zh., 6 (3): 340 (1960).Google Scholar
  38. 38.
    R. P. Rya, A. G. Lutsh, and R. T. Beyer, Measurement of the distortion of finite ultrasonic waves in liquids by a pulse method, J. Acoust. Soc. Am., 34 (1): 31 (1952).Google Scholar
  39. 39.
    K. L. Zankel and E. A. Hiedemann, Simple demonstration of the presence of second harmonics in progressive ultrasonic waves of finite amplitude, J. Acoust. Soc. Am., 30 (6): 582 (1958).CrossRefGoogle Scholar
  40. 40.
    L. L. Myasnikov, On the “flipping” of a large-amplitude sound wave, Zh. Tekh. Fiz., 8: 1896 (1938).Google Scholar
  41. 41.
    R. T. Beyer and V. Narasimhau, Note on finite amplitude waves in liquids, J. Acoust. Soc. Am., 29 (4): 532 (1957).CrossRefGoogle Scholar
  42. 42.
    F. E. Fox and W. A. Wallace, Absorption of finite amplitude sound waves, J. Acoust. Soc. Am., 26 (6): 994 (1954).CrossRefGoogle Scholar
  43. 43.
    L. K. Zarembo, Absorption of Finite Amplitude Ultrasonic Waves in a Liquid (Candidate’s Dissertation), MGU, Moscow (1958).Google Scholar
  44. 44.
    L. K. Zarembo, V. A. Krasil’nikov, and V. V. Shklovskaya-Kordi, Absorption of finite-amplitude ultrasonic waves in liquids, Dokl. Akad. Nauk SSSR, 109 (4): 731 (1956).Google Scholar
  45. 45.
    O. M. Towlet and R. B. Lindsay, Absorption and velocity of ultrasonic waves of finite amplitude in liquids, J. Acoust. Soc. Am., 27 (3): 530 (1955).CrossRefGoogle Scholar
  46. 46.
    V. A. Burov and V. A. Krasil’nikov, Absorption of ultrasonic waves of large intensity in water, Dokl. Akad. Nauk SSSR, 124 (3): 571 (1959).Google Scholar
  47. 47.
    K. A. Naugol’nykh and E. V. Romanenko, Propagation of finite-amplitude waves in a liquid, Akust. Zh., 4 (2): 200 (1958).Google Scholar
  48. 48.
    K. A. Naugol’nykh, S. I. Soluyan, and R. V. Khokhlov, Spherical waves of finite amplitude in a viscous thermally conducting medium, Akust. Zh., 9 (1): 54 (1963).MathSciNetGoogle Scholar
  49. 49.
    K. A. Naugol’nykh, S. I. Soluyan, and R. V. Khokhlov, Cylindrical waves of finite amplitude in a dissipative medium, Vest. MGU, Ser. III, 4: 65 (1962).Google Scholar
  50. 50.
    D. T. Blackstock, On plane, spherical, and cylindrical sound waves of finite amplitude in lossless fluids, Tech. Rep. AF 49 ( 638 ), General Dynamics, Rochester, New York (1965).Google Scholar
  51. 51.
    R. Khokhlov, K. Naugol’nykh, and S. Soluyan, Waves of moderate amplitudes in absorbing media, Acustica, 14 (5): 248 (1964).MATHGoogle Scholar
  52. 52.
    H. S. Heaps, Waveform of finite amplitude derived from equations of hydrodynamics, J. Acoust. Soc. Am., 34: 355 (1962).CrossRefGoogle Scholar
  53. 53.
    I. Rudnick, On the attenuation of high-amplitude waves of stable sawtooth form, J. Acoust. Soc. Am., 30 (4): 339 (1958).CrossRefGoogle Scholar
  54. 54.
    P. J. Westervelt, Self-scattering of high-intensity sound, Proc. Third Internat. Congress Acoustics, Stuttgart (1959), ed. by L. Cremer, Amsterdam (1961).Google Scholar
  55. 55.
    K. A. Naugol’nykh, Propagation of Finite-Amplitude Sound Waves (Candidate’s Dissertation), Akust. Inst. (1959).Google Scholar
  56. 56.
    L. D. Rozenberg, Sound Focusing Systems, Izd. AN SSSR, Moscow-Leningrad (1949).Google Scholar
  57. 57.
    A. K. Burov, Generation of high-intensity ultrasonic oscillations for the treatment of malignant tumors in animals and humans, Dokl. Akad. Nauk SSSR, 106 (2): 239 (1956).Google Scholar
  58. 58.
    D. V. Khaminov, Dependence of the gain of a sound-focusing system on the intensity of ultrasound in water, Akust. Zh., 3 (3): 294 (1957).Google Scholar
  59. 59.
    K. A. Naugol’nykh and E. V. Romanenko, Dependence of the gain of a focusing system on the sound intensity, Akust. Zh., 5 (2): 191 (1959).Google Scholar
  60. 60.
    S. I. Soluyan and R. V. Khokhlov, Finite-amplitude acoustic waves in a relaxing medium, Akust. Zh., 8 (2): 220 (1962).MathSciNetGoogle Scholar
  61. 61.
    R. Khokhlov and S. Soluyan, Propagation of acoustic waves of moderate amplitude through dissipative and relaxing media, Acustica, 14 (5): 242 (1964).Google Scholar
  62. 62.
    A. L. Polyakov, S. I. Soluyan, and R. V. Khokhlov, Propagation of finite disturbances in a relaxing medium, Akust. Zh., 8 (1): 107 (1962).Google Scholar
  63. 63.
    A. L. Polyakova, Finite Disturbances in a Relaxing Medium, Akust. Inst., Moscow (1962).Google Scholar
  64. 64.
    Z. A. Gol’dberg, Interaction of plane longitudinal and transverse elastic waves, Akust. Zh., 6 (3): 307 (1960).Google Scholar
  65. 65.
    A. A. Gedroits, L. K. Zarembo, and V. A. Krasil’nikov, Elastic waves of finite amplitude in solids and lattice anharmonicity, Vest. MGU, Ser. III, 3: 92 (1962).Google Scholar
  66. 66.
    A. A. Gedroits and V. A. Krasil’nikov, Zh. Éksp. Teor. Fiz., 43 (5): 1592 (1962).Google Scholar
  67. 67.
    F. R. Rollins, Interaction of ultrasonic waves in solid media, Appl. Phys. Lett„ 2 (8): 147 (1963).Google Scholar
  68. 68.
    V. V. Shklovskaya-Kordi, Experimental Investigations of Finite-Amplitude Ultrasonic Waves, Akust. Inst., Moscow (1966).Google Scholar
  69. 69.
    L. A. Pospelov, Propagation of finite amplitude elastic waves, Akust. Zh., 11 (3): 359 (1965).Google Scholar
  70. 70.
    R. N. Thurston, Ultrasonic data and the thermodynamics of solids, Proc. IEEE, 53 (10): 1320 (1965).Google Scholar
  71. 71.
    S. V. Krivokhizha, D. I. Mash, V. V. Morozov, and I. L. Fabelinskii, Induced Mandel’shtam-Brillouin scattering in a quartz single crystal in the temperature interval 2.1–300°K, ZhÉTF Pis. Red., No 3, o. 378 (1966).Google Scholar
  72. 72.
    A. L. Polyakova, Nonlinear effects in a hypersonic wave, ZhÉTF Pis. Red., 4 (4): 132 (1966).Google Scholar
  73. 73.
    M. G. Kogan, Energy Losses of the Mechanical Oscillations of Magnetostrictive Transducers and Tools for Ultrasonic Processing, Publ. No. 3, Leningrad, Dom Nauch. Tekh. Propagandy, Leningrad (1962).Google Scholar
  74. 74.
    P. A. Bezuglyi, V. L. Fil’, and A. A. Shevchenko, Nonlinear effects in the absorption of ultrasound in superconducting indium, Zh. É’ksp. Tear. Fiz., 496 (12)): 1715 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • K. A. Naugol’nykh

There are no affiliations available

Personalised recommendations