Advertisement

Supply Voltage Limits in Standard CMOS Technologies

  • Hussein Ballan
  • Michel Declercq
Chapter

Abstract

Various undesirable effects can take place in a low-voltage transistor if one of its terminals is pushed beyond the voltage limit set by the technology. The scope of this chapter is the investigation and modelling of these effects. A particular interest is first focused on the degradation of the device characteristics resulting from channel hot-carrier effects. Then, destructive mechanisms such as, avalanche breakdown. surface breakdown, snapback breakdown, punchthrough breakdown and gate oxide breakdown are analysed. These theoretical considerations are the basics required to implement the design of reliable high-voltage devices.

Keywords

Breakdown Voltage Depletion Layer Electric Field Distribution nMOS Transistor Gate Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. A. El-Mancy, D. M. Caughey, “Modelling weak avalanche multiplication currents in IGFETS and SOS transistors for CAD”, IEEE IEDM-75, Dig. Tech. Papers,pp.31–34Google Scholar
  2. [2]
    P. E. Cottrell, R. R. Troutman, “Hot-electron Emission in N-channel IGFET’s”, IEEE Trans. Elec. Dev., Vol. ED-26, NO. 4, April 1979, pp. 520–533CrossRefGoogle Scholar
  3. [3]
    C. Hu, S. C. Tam, P. K. Ko, T. Y. Chan, K. W. Tenill, “Hot-electron-Induced MOSFET Degradation—Model, Monitor, and improvement”, IEEE Journal of Solid-State circuits., Vol. SC-20, NO. 1, February 1985, pp. 295–305Google Scholar
  4. [4]
    C. Hu, “Hot-electron Effects in MOSFET’s”, IEEE IEDM-83,pp.176–181Google Scholar
  5. [5]
    C. Hu, “Hot Carrier Effects”, in Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, eds.), VLSI Electronics Vol. 18, pp.119–157, Academic Press Inc., New York, 1989Google Scholar
  6. [6]
    T. Y. Chan, P. K. Ko, C. Hu, “A Simple Method to characterize substrate current in MOSFET’s”, IEEE Trans. Elec. Dev. Lett., EDL-5(12), pp. 505–507 (1984)Google Scholar
  7. [7]
    T. C. Ong, P. K. Ko, C. Hu, “Hot-Carrier Current Modelling and Device Degradation in Surface-Channel p-MOSFET’s”, IEEE Trans. Elec. Dev., Vol. ED-37, NO. 7, July 1990, pp. 1658–1666CrossRefGoogle Scholar
  8. [8]
    E. Takeda, H. Kume, T. Toyabe, S. Asai “Submicrometer MOSFET Structure minimizing hot-carrier generation”, IEEE Trans. Elec. Dev.,Vol. ED-29, 611(1982)Google Scholar
  9. [9]
    S. Tam, P. K. Ko, C. Hu “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’ s”, IEEE Trans. Elec. Dev., Vol. ED-31, NO. 9, September 1984, pp. 1116–1125Google Scholar
  10. [10]
    F. C. Hsu, S. Tam, “Relationship Between MOSFET Degradation and Hot-ElectronInduced Interface-State Generation”, IEEE Trans. Elec. Dev. Lett., EDL-5, NO. 2, February 1984, pp. 50–52CrossRefGoogle Scholar
  11. [11]
    T. H. Ning, H. N. Yu, “Optically Induced Injection Of Hot Electrons into SiO2”, J. Appl. Phys., Vol. 45, pp. 5373, 1974Google Scholar
  12. [12]
    K. R. Hofmann, C. Werner, W. Weber, G. Dorda, “Hot-Electron and Hole-Emission Effects in Short n-Channel MOSFET’s”, IEEE Trans. Elec. Dey., Vol. ED-32, NO. 3, March 1985, pp. 691–699CrossRefGoogle Scholar
  13. [13]
    E. Takeda, N. Susuki, “An Empirical Model for Device Degradation Due to Hot-Carrier Injection”, IEEE Trans. Elec. Dey. Lett., EDL-4, NO. 4, April 1983, pp. 111–113Google Scholar
  14. [14]
    P. Heremans, H. E. Maes, N. Saks, “Evaluation of Hot Carrier Degradation of N-Channel MOSFET’s with the Charge Pumping Technique”, IEEE Trans. Elec. Dev. Leu., EDL-7, NO. 7, July 1986, pp. 428–430Google Scholar
  15. [15]
    N. S. Saks, P. L. Heremans, L. V. D. Hove, H. E. Maes, R. F. De Keersmaecker, G. J. Declerck, “Observation of Hot-Hole Injection in NMOS Transistors Using a Modified Floating-Gate Technique”, IEEE Trans. Elec. Dey., Vol. ED-33, NO. 10, October 1986, pp. 1529–1533CrossRefGoogle Scholar
  16. [16]
    B. S. Doyle, M. Bourcerie, C. Bergonzoni, R. Benecchi, A. Bravis, K. R. Mistry, A. Boudou “The Generation and Characterisation of Electron and Hole Traps Created by Hole Injection During Low Gate Voltage Hot-Carrier Stressing of n-MOS Transistors”, IEEE Trans. Elec. Dev., Vol. ED-37, NO. 8, August 1990, pp. 1869–1876CrossRefGoogle Scholar
  17. [17]
    R. Bellens, P. Heremans, G. Groesneken, H. E. Maes, “Hot-carrier Effects in n-Channel MOS Transistors Under Alternating Stress Condidtions”, IEEE Trans. Elec. Dev. Lett., EDL-9, NO. 5, May 1988, pp. 232–234CrossRefGoogle Scholar
  18. [18]
    T. Tsuchiya “Trapped-Electron and Generated Interface-Trap Effects in Hot-ElectronInduced MOSFET Degradation” IEEE Trans. Elec. Dev., Vol. ED-34, NO. 11, November 1987, pp. 2291–2296CrossRefGoogle Scholar
  19. [19]
    B. S. Doyle, M. Bourcerie, J. C. Marchetaux, A. Boudou “Interface State Creation and Charge Trapping in the Medium-to-High Gate Voltage Range (Vd/2 z V, Vd) During Hot-Carrier Stressing of n-MOS Transistors”, IEEE Trans. Elec. Dey., Vol. ED-37, NO. 3, March 1990, pp. 744–754CrossRefGoogle Scholar
  20. [20]
    K. Mistry, B. Doyle, “A Model for AC Hot-Carrier Degradation in n-Channel MOSFET’s”, IEEE Trans. Elec. Dey. Lett., EDL-12, NO. 9, September 1991, pp. 492–494CrossRefGoogle Scholar
  21. [21]
    B. J. Baliga, “Modern Power Devices”, Krieger Publishing Company, Florida, 1987Google Scholar
  22. [22]
    M. S. Adler, V. A. K. Temple “Semiconductor Avalanche Breakdown Design Manual”, GE Technology Marketing Operation, Schenectady, New York 1979Google Scholar
  23. [23]
    B. J. Baliga, S. K. Ghandhi, “Analytical Solutions for the Breakdown Voltage of Abrupt Cylindrical and Spherical Junctions”, Solid State Electronics,Vol. 19, pp. 739–744(1976)Google Scholar
  24. [24]
    A. S. Grove, O. Leistiko, W. W. Hooper, “Effect of Surface Fields on the Breakdown Voltage of Planar Silicon p-n Junctions” IEEE Trans. Elec. Dev., Vol. ED-14, NO. 3, March 1967, pp. 157–162CrossRefGoogle Scholar
  25. [25]
    F. Conti, M. Conti, “Surface Breakdown in Silicon Planar Diodes Equipped with field-plate”, Solid State Electronics,Vol. 15, pp. 93–105(1972)Google Scholar
  26. [26]
    F. C. Hsu, P. K. Ko, S. Tam, C. Hu, R. S Muller, “An Analytical Breakdown Model for Short-Channel MOSFET’s” IEEE Trans. Elec. Dev., Vol. ED-29, NO. 11, November 1982, pp. 1735–1740Google Scholar
  27. [27]
    R. R. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering” IEEE Trans. Elec. Dev., Vol. ED-26, NO. 4, April 1979, pp. 461–469CrossRefGoogle Scholar
  28. [28]
    S. Wolf, “The Submicron MOSFET”, in Silicon Processing for the VLSI Era, Lattice Press, California, 1995Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Hussein Ballan
    • 1
  • Michel Declercq
    • 1
  1. 1.Swiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations