Skip to main content

Sweeteners and dental health

  • Chapter
Handbook of Sweeteners

Abstract

During the last decade the prevalence of dental caries in children, teenagers and young adults has declined substantially in most industrialised countries. This has led to an increasing proportion of caries-free individuals and to improved dental health. However, recent epidemiological data show that caries continues to be a problem in adult populations, where about 10–15% may still be considered at high risk of caries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahldén, M.L. and Frostell, G. (1975) Variation in pH of plaque after a mouth rinse with a saturated solution of mannitol. Odontol. Bevy. 26, 1–6.

    Google Scholar 

  • Assev, S., Vegarud, G. and Rölla, G. (1980) Growth inhibition of Streptococcus mutans strain OMZ 176 by xylitol. Acta Pathol. Microbial. Immunol. Scand. 88, 61–63.

    Google Scholar 

  • Bânóczy, J., Hadas, E., Esztâry, I., Marosi, I. and Nemes, J. (1981) Three-year result with sorbitol in clinical longitudinal experiments. J. Int. Assoc. Dent. Child. 12 59–63.

    Google Scholar 

  • Bânóczy, J., Orsos, M., Pienihäkkinen, K. and Scheinin, A. (1985) Collaborative WHO xylitol field studies in Hungary. IV. Saliva levels from Streptococcus mutans. Acta Odontol. Scand. 43, 367–370.

    Article  Google Scholar 

  • Best, G.M. and Brown, A.T. (1987) Interaction of saccharin with hexitol metabolism by Streptococcus mutans. Caries Res. 21, 204–214.

    Article  Google Scholar 

  • Bibby, B.G. and Fu, J. (1985) Changes in plaque pH in vitro by sweeteners. J. Dent. Res. 64, 1130–1133.

    Article  Google Scholar 

  • Birkhed, D. (1978) Automatic titration method for determination of acid production from sugars and sugar alcohols in small samples of dental plaque material. Caries Res. 12, 128–136

    Article  Google Scholar 

  • Birkhed, D. and Edwardsson, S. (1978) Acid production from sucrose substitutes in human dental plaque. In Health and Sugar Substitutes ed. B. Guggenheim, pp. 211–217.

    Google Scholar 

  • Birkhed, D., and Frostell, G. (1978) Caries in rats fed highly or slightly hydrolysed Lycasin®. Caries Res. 12, 250–255.

    Article  Google Scholar 

  • Birkhed, D. and Skude, G. (1978) Relation of amylase to starch and Lycasin® metabolism in human dental plaque in vitro. Scand. J. Dent. Res. 86, 248–258.

    Google Scholar 

  • Birkhed, D., Edwardsson, S., Svensson, B., Moskowitz, F. and Frostell, G. (1978) Acid production from sorbitol in human dental plaque. Arch. Oral Biol. 23, 971–975.

    Article  Google Scholar 

  • Birkhed, D., Edwardsson, S., Ahldén, M.L. and Frostell, G. (1979) Effects of 3 months consumption of hydrogenated starch hydrolysate (Lycasin®), maltitol, sorbitol and xylitol on human dental plaque. Acta Odontol. Scand. 37, 103–115.

    Article  Google Scholar 

  • Birkhed, D. and Bär, A. (1991) Sorbitol and dental caries. World Rev. Nutr. Diet. 65 1–37.

    Google Scholar 

  • Birkhed, D., Topitsoglou, V., Edwardsson, S. and Frostell, G. (1981) Cariogenicity of invert sugar in long-term rat experiments. Caries Res. 15, 302–307.

    Article  Google Scholar 

  • Birkhed, D., Edwardsson, S., Wikesjö, U., Ahldén, M.-L. and Ainamo, J. (1983) Effects of 4 days consumption of chewing-gum containing sorbitol or a mixture of sorbitol and xylitol on dental plaque and saliva. Caries Res. 17, 76–88.

    Article  Google Scholar 

  • Birkhed, D., Sundin, B. and Westin, S.I (1989) Per capita consumption of sugar-containing products and dental caries in Sweden from 1960 to 1985. Commun. Dent. Oral Epidemiol. 17, 41–43.

    Article  Google Scholar 

  • Birkhed, D., Svensäter, G. and Edwardsson, S. (1990b) Cariological studies of individuals with long-term sorbitol consumption. Caries Res., 24, 220–223.

    Article  Google Scholar 

  • Bowen, W.H., Amsbaugh, S.M., Monell-Torrens, S., Brunelle, J., Kuzmiak-Jones, H. and Cole, M.F. (1980) A method to assess cariogenic potential of foodstuffs. J. Am. Dent. Assoc. 100, 677–681.

    Google Scholar 

  • Brown, A.T. and Best, G.M. (1988) Apparent synergism between the interaction of saccharin, acesulfame K, and fluoride with hexitol metabolism by Streptococcus mutans. Caries Res. 22, 2–6.

    Article  Google Scholar 

  • Brown, A.T. and Wittenberg, C.L. (1973) Mannitol and sorbitol catabolism in Streptococcus mutans. Arch. Oral Biol. 18, 117–126.

    Article  Google Scholar 

  • Burt, B.A. and Ismail, A.I. (1986) Diet, nutrition, and food cariogenicity. J. Dent. Res. 65, 1475–1484.

    Google Scholar 

  • Carlsson. J. and Egelberg. J. (1965) Effect of diet on early plaque formation in man. Odontol. Revy. 16, 112–125.

    Google Scholar 

  • Colman, G., Bowen, W.H. and Cole, M.F. (1977) The effect of sucrose, fructose and a mixture of glucose and fructose on the incidence of dental caries in monkeys (M. fascicularis). Br. Dent. J. 142, 217–221.

    Article  Google Scholar 

  • Cornick, D.E.R. and Bowen, W.H. (1972) The effect of sorbitol on the microbiology of the dental plaque in monkeys (Macaca Iras). Arch. Oral Biol. 17, 1637–1648.

    Article  Google Scholar 

  • DePaola, D.P. (1986) Executive summary. Proceedings, scientific consensus conference on methods for assessment of the cariogenic potential of foods. J. Dent. Res. 65, 1540–1543.

    Google Scholar 

  • Edgar, W.M. (1976) The role of saliva in the control of pH changes in human dental plaque. Caries Res. 10, 241–254.

    Article  Google Scholar 

  • Edwardsson, S., Birkhed, D. and Mejàre, B. (1977) Acid production from Lycasin®, maltitol, sorbitol and xylitol by some oral streptococci and lactobacilli. Acta Odontol. Scand. 35, 257–263.

    Article  Google Scholar 

  • Emilson, C.G. and Krasse, B. (1985) Support for and implications of the specific plaque hypothesis. Scand. J. Dent. Res. 93, 96–104.

    Google Scholar 

  • Fehr, F.R. von der, Löe, H. and Theilade, E. (1970) Experimental caries in man. Caries Res. 4, 131–148.

    Article  Google Scholar 

  • Firestone, A.R., Schmid, R. and Mühlemann, H.R. (1980) The effects of topical applications of sugar substitutes on the incidence of caries and bacterial agglomerate formation in rats. Caries Res. 14, 324–332.

    Article  Google Scholar 

  • Frostell, G. (1973) Effects of mouth rinses with sucrose, glucose, fructose, lactose, sorbitol and Lycasin® on the pH of dental plaque. Odontol. Revy. 24, 217–226.

    Google Scholar 

  • Frostell, G. and Birkhed, D. (1978) Acid production from Swedish Lycasin® in (candy quality) and French Lycasin® (80/55) in human dental plaques. Caries Res. 12, 256–263.

    Article  Google Scholar 

  • Frostell, G., Blomlöf, L., Blomqvist, T. et al. (1974) Substitution of sucrose by Lycasin® in candy. `The Roslagen study’. Acta Odontol. Scand. 32, 235–254.

    Article  Google Scholar 

  • Frostell, G., Blomqvist, T., Brunér, P. et al. (1981) Reduction of caries in pre-school children by sucrose restriction and substitution with invert sugar. Acta Odontol. Scand. 39, 333–347.

    Article  Google Scholar 

  • Frostell, G., Birkhed, D., Edwardsson, S. et al. (1990a) Effect of partial substitution of sucrose with invert sugar in combination with Duraphat® treatment on caries development in pre-school children—the Malmö study. Caries Res.,in press.

    Google Scholar 

  • Gehring, F. (1978) Prufung der Kariogenität von Lactose, Report VO(EG) 723 /78, pp. 1–20.

    Google Scholar 

  • Gehring, F., Mäkinen, K., Larmas, M. and Scheinin, A. (1975) Turku sugar studies X. Occurrence of polysaccharide-forming streptococci and ability of the mixed plaque microbiota to ferment various carbohydrates. Acta Odontol. Scand. 33 (Suppl. 70), 223–237.

    Google Scholar 

  • Glass, R. L. (1983) A two-year clinical trial of sorbitol chewing gum. Caries Res. 17, 365–368.

    Article  Google Scholar 

  • Glinsmann, W.H., Irausquin. H. and Park. Y.K. (1986) Evaluation of health aspects of sugars contained in carbohydrate sweeteners. J. Nutr. 116, 1–216.

    Google Scholar 

  • Goda, T. and Hosoya, N. (1983) Hydrolysis of Palatinose by rat intestinal sucrase-isomaltase complex. J. Jpn. Soc. Nutr. Food Sci. 36, 169–173.

    Article  Google Scholar 

  • Graf, H. and Mühlemann, H.R. (1966) Telemetry of plaque pH from interdental area. Heiv. Odontol. Acta 10, 94–101.

    Google Scholar 

  • Grenby, T.H. (1975) Dental plaque, dental caries and sugar intake. Br. Dent. J. 139, 129–135.

    Article  Google Scholar 

  • Grenby, T.H. (1989) Latest state of research on lactitol and dental caries. Int. Dent. J. 39, 25–32.

    Google Scholar 

  • Grenby, T. H. and Desai, T. (1988) A trial of lactitol in sweets and its effects on human dental plaque. Br. Dent J. 164, 383–387.

    Article  Google Scholar 

  • Grenby, T.H. and Phillips, A. (1989) Dental and metabolic effects of lactitol in the diet of laboratory rats. 61, 17–24.

    Google Scholar 

  • Grenby, T.H. and Saldanha, M.G. (1986) Studies of the inhibitory action of intense sweeteners on oral microorganisms relating to dental health. Caries Res. 20, 7–16.

    Article  Google Scholar 

  • Grenby, T.H., Phillips, A. and Mistry, M. (1989) Studies of the dental properties of lactitol compared with five other bulk sweeteners in vitro. Caries Res. 23, 315–319.

    Article  Google Scholar 

  • Gustafsson, B.E., Quensel, C.E., Lanke, L.S. et al. (1954) The Vipeholm dental caries study. The effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol. Scand. 11, 232–364.

    Article  Google Scholar 

  • Hamada, S. and Slade, H.D. (1980) Biology, immunology and cariogenicity of Streptococcus mutans. Microbial. Rev. 44, 331–384.

    Google Scholar 

  • Harris, R. (1963) Biology of the children of Hopewood House, Bowral, Australia. 4. Observations of dental caries experience extending over five years (1957–1961). J. Dent. Res. 42, 1387–1399.

    Article  Google Scholar 

  • Havenaar, R., Huis in’t Veld, I.H.I., Backer Dirks, O. and de Stoppelaar, J.D. (1979) Some bacteriological aspects of sugar substitutes. In Health and Sugar Substitutes, ed. B. Guggenheim, Karger, Basel, pp. 192–198.

    Google Scholar 

  • Havenaar, R., Drost, J.D., de Stoppelaar, J.D, Huis in’t Veld, J.H.J. and Backer Dirks, O. (1984) Potential cariogenicity of Lycasin® 80/55 in comparison to starch, sucrose, xylitol, sorbitol and L-sorbose in rats. Caries Res. 18, 375–384.

    Google Scholar 

  • Hefti, A. (1980) Cariogenicity of topically applied sugar substitutes in rats under restricted feeding conditions. Caries Res. 14, 136–140.

    Article  Google Scholar 

  • Hoeven, J.S. van der (1979) Influence of disaccharide alcohols on the oral microflora. Caries Res. 13, 301–306.

    Article  Google Scholar 

  • Hoeven, J.S. van der (1980) Cariogenicity of disaccharide alcohols in rats. Caries Res. 14, 61–66.

    Article  Google Scholar 

  • Hoeven, J.S. van der (1986) Cariogenicity of lactitol in program-fed rats. Caries Res. 20, 441–443.

    Article  Google Scholar 

  • Hoeven, J.S. van der and Franken, H.C.M (1982) Production of acids in rat dental plaque with or without Streptococcus mutans. Caries Res. 16, 375–383.

    Article  Google Scholar 

  • Honkala, E. and Tala, H. (1987) Total sugar consumption and dental caries in Europe—an overview. Int. Dent. J. 37, 185–191.

    Google Scholar 

  • Ikeda, T. and Sandham, H.J. (1972) A high-sucrose medium for the identification of Streptococcus mutans. Arch. Oral Biol. 17, 781–783.

    Article  Google Scholar 

  • Imfeld. T. (1983) Identification of Low Caries Risk Dietary Components, Karger, Basel.

    Google Scholar 

  • Isokangas, P., Alanen, P., Tiekso, J. and Mäkkinen, K.K. (1988) Xylitol chewing gum in caries prevention: A field study in children. J. Am. Dent. Assoc. 117, 315–320.

    Google Scholar 

  • Isokangas, P., Tiekso, J., Alanen, P. and Mäkkinen, K.K. (1989) Long-term effect of xylitol chewing gum on dental caries. Commun. Dent. Oral Epidemiol. 17, 200–203.

    Article  Google Scholar 

  • Kalfas, S. and Edwardsson, S. (1990) Sorbitol-fermenting predominant cultivable flora of human dental plaque in relation to sorbitol adaptation and salivary secretion rate. Oral Microbial. Immunol. 5, 33–38.

    Article  Google Scholar 

  • Kalfas, S., Maki, Y., Birkhed, D. and Edwardsson, S. (1990a) Effect of pH on acid production from sorbitol in washed cell suspensions of oral bacteria. Caries Res. 24, 107–112.

    Article  Google Scholar 

  • Kalfas, S., Svensäter, G., Birkhed, D. and Edwardsson, S. (1990b) Sorbitol adaptation of dental plaque in people with low and normal salivary secretion rates. J. Dent. Res. 69, 442–446.

    Article  Google Scholar 

  • Knuuttila, M.L.E. and Mäkinen, K.K. (1975) Effect of xylitol on the growth and metabolism of Streptococcus mutans. Caries Res. 9, 177–189.

    Article  Google Scholar 

  • Krasse, B. (1966) Human streptococci and experimental caries in hamsters. Arch. Oral Biol. 11, 429–436.

    Article  Google Scholar 

  • Leach, S.A. and Green, R.M. (1980) Effect of xylitol-supplemented diets on the progression and regression of fissure caries in the albino rat. Caries Res. 14, 16–23.

    Article  Google Scholar 

  • Lindquist, B. and Emilson, C.G. (1990) Distribution and prevalence of mutans streptococci in the human dentition. J. Dent. Res. 69, 1160–1166.

    Article  Google Scholar 

  • Lingström, P., Holm, J., Birkhed, D. and Björck, I. (1989) Effects of variously processed starch on pH of human dental plaque. Scand. J. Dent. Res. 97, 392–400.

    Google Scholar 

  • Lingström, P., Björck, I., Drews, A. and Birkhed, D. (1991) Effects of chemically modified starches in suspensions and lozenges on pH of human dental plaque. Scand. J. Dent. Res. 99, 30–39.

    Google Scholar 

  • Linke, H.A.B. and Chang, C.A. (1976) Physiological effects of sucrose substitutes and artificial sweeteners on growth pattern and acid production of glucose-grown Streptococcus mutans strains in vitro. Z. Naturforsch. 31, 245–251.

    Google Scholar 

  • Loesche, W.J. (1986) Role of Streptococcus mutans in human dental decay. Microbial. Rev. 50, 353–380.

    Google Scholar 

  • Loesche, W.J., Grossman, N.S., Earnest, R. et al. (1984) The effect of chewing xylitol gum on the plaque and saliva levels of Streptococcus mutans. J. Am. Dent. Assoc. 108, 587–592.

    Google Scholar 

  • Lohmann, D., Gehring, F. and Katie, E.J. (1981) Fermentation of L-sorbose by microorganisms of the human dental plaque. Caries Res. 15, 263–271.

    Article  Google Scholar 

  • Lout, R.K., Messer, L.B., Soberay, A., Kajander, K. and Rudney, J. (1988) Cariogenicity of frequent aspartame and sorbitol rinsing in laboratory rats. 22, 237–241.

    Google Scholar 

  • Maki, Y., Ohta, K., Takazoe, I., Matsukubo, Y., Takaesu, Y., Topitsoglou, V. and Frostell, G. (1983) Acid production from isomaltulose, sucrose, sorbitol, and xylitol in suspensions of human dental plaque. Caries Res. 17, 335–339.

    Article  Google Scholar 

  • MOIler, I.J. and Poulsen, S. (1973) The effect of sorbitol-containing chewing gum on the incidence of dental caries, plaque and gingivitis in Danish schoolchildren. Commun. Dent. Oral Epidemiol. 1 58–67.

    Google Scholar 

  • Mouton, C., Dextraze, L. and Mäkinen, K. (1984) Xylitol-resistant isolates of S. mutans in xylitol consumers. J. Dent. Res. 63 (special issue), 212 (abstr. no. 376).

    Google Scholar 

  • Mühlemann, H.R., Iselin, W. and Mathaler, T.M. (1977a) Antiplaque effects of sorbose. Hely. Odontal. Acta 21, 69–74.

    Google Scholar 

  • Mühlemann, H.R., Schmid, R., Noguchi, T. et al. (1977b) Some dental effects of xylitol under laboratory and in vivo conditions. Caries Res. 11, 263–276.

    Article  Google Scholar 

  • Neff, D. (1967) Acid production from different carbohydrate sources in human plaque in situ. Caries Res. 1, 78–87.

    Article  Google Scholar 

  • Newbrun, E. (1967) Sucrose, the arch criminal of dental caries. Odontol. Revy. 18, 373–386.

    Google Scholar 

  • Newbrun, E. (1982) Sugar and dental caries: a review of human studies. Science 217, 418–423.

    Article  Google Scholar 

  • Newbrun, E., Hoover, C., Mettraux, G. and Graf, H. (1980) Comparison of dietary habits and dental health of subjects with hereditary fructose intolerance and control subjects. J. Am. Dent. Assoc. 101, 619–626.

    Google Scholar 

  • Olson, B.L. (1977) An in vitro study of the effects of artificial sweeteners on adherent plaque formation. J. Dent. Res. 56, 1426.

    Article  Google Scholar 

  • Ooshima, T., Izumitani, A., Sobue, S., Okahashi, N. and Hamada, S. (1983) Noncariogenicity of the disaccharide Palatinose in experimental dental caries of rats. Infect. Immun. 39, 43–49.

    Google Scholar 

  • Platt, D. and Werrin, S.R. (1979) Acid production from alditols by oral streptococci. J. Dent. Res. 58, 1733–1734.

    Article  Google Scholar 

  • Roberts, C.J., Rugg—Gunn, A.J. and Wright, W.G. (1984) The effect of human milk on human dental plaque pH and in vitro enamel dissolution. Caries Res. 18, 162 (abstr. no. 25).

    Google Scholar 

  • Rugg-Gunn, A.J. (1989) Lycasin® and the prevention of dental caries. In Progress in Sweeteners, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 311–329.

    Google Scholar 

  • Rugg-Gunn, A.J. and Edgar, W.M. (1984) Sugar and dental caries: a review of the evidence. Commun. Dent. Health 1, 85–92.

    Google Scholar 

  • Rölla, G., Ciardi, J.E. and Schultz, S.A. (1983) Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth. Scand. J. Dent. Res. 91, 112–117.

    Google Scholar 

  • Scheinin, A. (1985) Field studies on sugar substitutes. Int. Dent. J. 35, 195–200.

    Google Scholar 

  • Scheinin, A., Mäkinen, K.K. and Ylitalo, K. (1975a) Turku sugar studies. V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol. Scand. 33 (Suppl. 70), 67–104.

    Google Scholar 

  • Scheinin, A., Mäkinen, K.K., Tammisalo, E. and Rekola, M. (1975b) Turku sugar studies. XVIII. Incidence of dental caries in relation to 1-year consumption of xylitol chewing gum. Acta Odontol. Scand. 33 (Suppl. 70), 307–316.

    Google Scholar 

  • Shaw, J.H. (1976) Inability of low levels of sorbitol and mannitol to support caries activity in rats. J. Dent. Res. 55, 376–382.

    Article  Google Scholar 

  • Sheiham, A. (1983) Sugars and dental decay. Lancet i, 282–284.

    Google Scholar 

  • Siebert, G., Ziesenitz, S.C. and Lotter, J. (1987) Marked caries inhibition in the sucrose-challenged rat by a mixture of nonnutritive sweeteners. Caries Res. 21, 141–148.

    Article  Google Scholar 

  • Sreebny, L.M. (1982) Sugar availability, sugar consumption and dental caries. Commun. Dent. Oral Epidemiol. 10, 1–7.

    Google Scholar 

  • Stephan, R.M. (1940) Changes in hydrogen-ion concentration on tooth surfaces and in carious lesions. J. Am. Dent Assoc. 27, 718–723.

    Google Scholar 

  • Stephan, R.M. (1966) Effects of different types of human foods on dental health in experimental animals J. Dent Res. 45, 1551–1561.

    Article  Google Scholar 

  • Söderling, E., Mäkinen, K.K., Chen, C.Y. et al. (1989) Effect of sorbitol, xylitol and xylitollsorbitol chewing gums on dental plaque. Caries Res. 23, 378–384.

    Article  Google Scholar 

  • Takazoe, I. (1989) Palatinose—an isomeric alternative to sucrose. In Progress in Sweeteners, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 143–167.

    Google Scholar 

  • Tanzer, J.M. (ed.) (1981) Animal Models in Cariology. Microbiol. Abstr. (Sp. Suppl.), Information Retrieval, Ltd., Washington, DC.

    Google Scholar 

  • Tanzer, J.M. and Slee, A.M. (1983) Saccharin inhibits tooth decay in laboratory models, J. Am. Dent. Assoc. 106, 331–333.

    Google Scholar 

  • Topitsoglou, V., Birkhed, D., Larsson, L.A. and Frostell, G. (1983) Effect of chewing gums containing xylitol, sorbitol or a mixture of xylitol and sorbitol on plaque formation, pH changes and acid production in human dental plaque. Caries Res. 17, 369–378.

    Article  Google Scholar 

  • Topitsoglou, V., Sasaki, N., Takazoe, I. and Frostell, G. (1984) Effect of frequent rinses with isomaltulose (Palatinose®) solution on acid production in human dental plaque. Caries Res. 18, 47–51.

    Article  Google Scholar 

  • Vadeboncoeur, C., Trahan, L., Mouton, C. and Mayrand, D. (1983) Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J. Dent. Res. 62, 882–884.

    Article  Google Scholar 

  • Waaler, S.M., Assev, S. and Rölla, G. (1985) Metabolism of xylitol in dental plaque. Scand. J. Dent. Res. 93, 218–221.

    Google Scholar 

  • Wennerholm, K. and Emilson, C. G. (1989) Effect of sorbitol-and xylitol-containing chewing gum on salivary microflora, saliva, and oral sugar clearance. Scand. J. Dent Res. 97, 257–262.

    Google Scholar 

  • Ziesenitz, S.C. and Siebert, G. (1986) Nonnutritive sweeteners as inhibitors of acid formation by oral microorganisms. Caries Res. 20, 498–502.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wennerholm, K., Emilson, CG., Birkhed, D. (1991). Sweeteners and dental health. In: Marie, S., Piggott, J.R. (eds) Handbook of Sweeteners. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5380-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5380-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5382-0

  • Online ISBN: 978-1-4757-5380-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics