Sweeteners and dental health

  • K. Wennerholm
  • C.-G. Emilson
  • D. Birkhed


During the last decade the prevalence of dental caries in children, teenagers and young adults has declined substantially in most industrialised countries. This has led to an increasing proportion of caries-free individuals and to improved dental health. However, recent epidemiological data show that caries continues to be a problem in adult populations, where about 10–15% may still be considered at high risk of caries.


Tooth Surface Dental Health Dental Plaque Mutans Streptococcus Oral Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahldén, M.L. and Frostell, G. (1975) Variation in pH of plaque after a mouth rinse with a saturated solution of mannitol. Odontol. Bevy. 26, 1–6.Google Scholar
  2. Assev, S., Vegarud, G. and Rölla, G. (1980) Growth inhibition of Streptococcus mutans strain OMZ 176 by xylitol. Acta Pathol. Microbial. Immunol. Scand. 88, 61–63.Google Scholar
  3. Bânóczy, J., Hadas, E., Esztâry, I., Marosi, I. and Nemes, J. (1981) Three-year result with sorbitol in clinical longitudinal experiments. J. Int. Assoc. Dent. Child. 12 59–63.Google Scholar
  4. Bânóczy, J., Orsos, M., Pienihäkkinen, K. and Scheinin, A. (1985) Collaborative WHO xylitol field studies in Hungary. IV. Saliva levels from Streptococcus mutans. Acta Odontol. Scand. 43, 367–370.CrossRefGoogle Scholar
  5. Best, G.M. and Brown, A.T. (1987) Interaction of saccharin with hexitol metabolism by Streptococcus mutans. Caries Res. 21, 204–214.CrossRefGoogle Scholar
  6. Bibby, B.G. and Fu, J. (1985) Changes in plaque pH in vitro by sweeteners. J. Dent. Res. 64, 1130–1133.CrossRefGoogle Scholar
  7. Birkhed, D. (1978) Automatic titration method for determination of acid production from sugars and sugar alcohols in small samples of dental plaque material. Caries Res. 12, 128–136CrossRefGoogle Scholar
  8. Birkhed, D. and Edwardsson, S. (1978) Acid production from sucrose substitutes in human dental plaque. In Health and Sugar Substitutes ed. B. Guggenheim, pp. 211–217.Google Scholar
  9. Birkhed, D., and Frostell, G. (1978) Caries in rats fed highly or slightly hydrolysed Lycasin®. Caries Res. 12, 250–255.CrossRefGoogle Scholar
  10. Birkhed, D. and Skude, G. (1978) Relation of amylase to starch and Lycasin® metabolism in human dental plaque in vitro. Scand. J. Dent. Res. 86, 248–258.Google Scholar
  11. Birkhed, D., Edwardsson, S., Svensson, B., Moskowitz, F. and Frostell, G. (1978) Acid production from sorbitol in human dental plaque. Arch. Oral Biol. 23, 971–975.CrossRefGoogle Scholar
  12. Birkhed, D., Edwardsson, S., Ahldén, M.L. and Frostell, G. (1979) Effects of 3 months consumption of hydrogenated starch hydrolysate (Lycasin®), maltitol, sorbitol and xylitol on human dental plaque. Acta Odontol. Scand. 37, 103–115.CrossRefGoogle Scholar
  13. Birkhed, D. and Bär, A. (1991) Sorbitol and dental caries. World Rev. Nutr. Diet. 65 1–37.Google Scholar
  14. Birkhed, D., Topitsoglou, V., Edwardsson, S. and Frostell, G. (1981) Cariogenicity of invert sugar in long-term rat experiments. Caries Res. 15, 302–307.CrossRefGoogle Scholar
  15. Birkhed, D., Edwardsson, S., Wikesjö, U., Ahldén, M.-L. and Ainamo, J. (1983) Effects of 4 days consumption of chewing-gum containing sorbitol or a mixture of sorbitol and xylitol on dental plaque and saliva. Caries Res. 17, 76–88.CrossRefGoogle Scholar
  16. Birkhed, D., Sundin, B. and Westin, S.I (1989) Per capita consumption of sugar-containing products and dental caries in Sweden from 1960 to 1985. Commun. Dent. Oral Epidemiol. 17, 41–43.CrossRefGoogle Scholar
  17. Birkhed, D., Svensäter, G. and Edwardsson, S. (1990b) Cariological studies of individuals with long-term sorbitol consumption. Caries Res., 24, 220–223.CrossRefGoogle Scholar
  18. Bowen, W.H., Amsbaugh, S.M., Monell-Torrens, S., Brunelle, J., Kuzmiak-Jones, H. and Cole, M.F. (1980) A method to assess cariogenic potential of foodstuffs. J. Am. Dent. Assoc. 100, 677–681.Google Scholar
  19. Brown, A.T. and Best, G.M. (1988) Apparent synergism between the interaction of saccharin, acesulfame K, and fluoride with hexitol metabolism by Streptococcus mutans. Caries Res. 22, 2–6.CrossRefGoogle Scholar
  20. Brown, A.T. and Wittenberg, C.L. (1973) Mannitol and sorbitol catabolism in Streptococcus mutans. Arch. Oral Biol. 18, 117–126.CrossRefGoogle Scholar
  21. Burt, B.A. and Ismail, A.I. (1986) Diet, nutrition, and food cariogenicity. J. Dent. Res. 65, 1475–1484.Google Scholar
  22. Carlsson. J. and Egelberg. J. (1965) Effect of diet on early plaque formation in man. Odontol. Revy. 16, 112–125.Google Scholar
  23. Colman, G., Bowen, W.H. and Cole, M.F. (1977) The effect of sucrose, fructose and a mixture of glucose and fructose on the incidence of dental caries in monkeys (M. fascicularis). Br. Dent. J. 142, 217–221.CrossRefGoogle Scholar
  24. Cornick, D.E.R. and Bowen, W.H. (1972) The effect of sorbitol on the microbiology of the dental plaque in monkeys (Macaca Iras). Arch. Oral Biol. 17, 1637–1648.CrossRefGoogle Scholar
  25. DePaola, D.P. (1986) Executive summary. Proceedings, scientific consensus conference on methods for assessment of the cariogenic potential of foods. J. Dent. Res. 65, 1540–1543.Google Scholar
  26. Edgar, W.M. (1976) The role of saliva in the control of pH changes in human dental plaque. Caries Res. 10, 241–254.CrossRefGoogle Scholar
  27. Edwardsson, S., Birkhed, D. and Mejàre, B. (1977) Acid production from Lycasin®, maltitol, sorbitol and xylitol by some oral streptococci and lactobacilli. Acta Odontol. Scand. 35, 257–263.CrossRefGoogle Scholar
  28. Emilson, C.G. and Krasse, B. (1985) Support for and implications of the specific plaque hypothesis. Scand. J. Dent. Res. 93, 96–104.Google Scholar
  29. Fehr, F.R. von der, Löe, H. and Theilade, E. (1970) Experimental caries in man. Caries Res. 4, 131–148.CrossRefGoogle Scholar
  30. Firestone, A.R., Schmid, R. and Mühlemann, H.R. (1980) The effects of topical applications of sugar substitutes on the incidence of caries and bacterial agglomerate formation in rats. Caries Res. 14, 324–332.CrossRefGoogle Scholar
  31. Frostell, G. (1973) Effects of mouth rinses with sucrose, glucose, fructose, lactose, sorbitol and Lycasin® on the pH of dental plaque. Odontol. Revy. 24, 217–226.Google Scholar
  32. Frostell, G. and Birkhed, D. (1978) Acid production from Swedish Lycasin® in (candy quality) and French Lycasin® (80/55) in human dental plaques. Caries Res. 12, 256–263.CrossRefGoogle Scholar
  33. Frostell, G., Blomlöf, L., Blomqvist, T. et al. (1974) Substitution of sucrose by Lycasin® in candy. `The Roslagen study’. Acta Odontol. Scand. 32, 235–254.CrossRefGoogle Scholar
  34. Frostell, G., Blomqvist, T., Brunér, P. et al. (1981) Reduction of caries in pre-school children by sucrose restriction and substitution with invert sugar. Acta Odontol. Scand. 39, 333–347.CrossRefGoogle Scholar
  35. Frostell, G., Birkhed, D., Edwardsson, S. et al. (1990a) Effect of partial substitution of sucrose with invert sugar in combination with Duraphat® treatment on caries development in pre-school children—the Malmö study. Caries Res.,in press.Google Scholar
  36. Gehring, F. (1978) Prufung der Kariogenität von Lactose, Report VO(EG) 723 /78, pp. 1–20.Google Scholar
  37. Gehring, F., Mäkinen, K., Larmas, M. and Scheinin, A. (1975) Turku sugar studies X. Occurrence of polysaccharide-forming streptococci and ability of the mixed plaque microbiota to ferment various carbohydrates. Acta Odontol. Scand. 33 (Suppl. 70), 223–237.Google Scholar
  38. Glass, R. L. (1983) A two-year clinical trial of sorbitol chewing gum. Caries Res. 17, 365–368.CrossRefGoogle Scholar
  39. Glinsmann, W.H., Irausquin. H. and Park. Y.K. (1986) Evaluation of health aspects of sugars contained in carbohydrate sweeteners. J. Nutr. 116, 1–216.Google Scholar
  40. Goda, T. and Hosoya, N. (1983) Hydrolysis of Palatinose by rat intestinal sucrase-isomaltase complex. J. Jpn. Soc. Nutr. Food Sci. 36, 169–173.CrossRefGoogle Scholar
  41. Graf, H. and Mühlemann, H.R. (1966) Telemetry of plaque pH from interdental area. Heiv. Odontol. Acta 10, 94–101.Google Scholar
  42. Grenby, T.H. (1975) Dental plaque, dental caries and sugar intake. Br. Dent. J. 139, 129–135.CrossRefGoogle Scholar
  43. Grenby, T.H. (1989) Latest state of research on lactitol and dental caries. Int. Dent. J. 39, 25–32.Google Scholar
  44. Grenby, T. H. and Desai, T. (1988) A trial of lactitol in sweets and its effects on human dental plaque. Br. Dent J. 164, 383–387.CrossRefGoogle Scholar
  45. Grenby, T.H. and Phillips, A. (1989) Dental and metabolic effects of lactitol in the diet of laboratory rats. 61, 17–24.Google Scholar
  46. Grenby, T.H. and Saldanha, M.G. (1986) Studies of the inhibitory action of intense sweeteners on oral microorganisms relating to dental health. Caries Res. 20, 7–16.CrossRefGoogle Scholar
  47. Grenby, T.H., Phillips, A. and Mistry, M. (1989) Studies of the dental properties of lactitol compared with five other bulk sweeteners in vitro. Caries Res. 23, 315–319.CrossRefGoogle Scholar
  48. Gustafsson, B.E., Quensel, C.E., Lanke, L.S. et al. (1954) The Vipeholm dental caries study. The effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol. Scand. 11, 232–364.CrossRefGoogle Scholar
  49. Hamada, S. and Slade, H.D. (1980) Biology, immunology and cariogenicity of Streptococcus mutans. Microbial. Rev. 44, 331–384.Google Scholar
  50. Harris, R. (1963) Biology of the children of Hopewood House, Bowral, Australia. 4. Observations of dental caries experience extending over five years (1957–1961). J. Dent. Res. 42, 1387–1399.CrossRefGoogle Scholar
  51. Havenaar, R., Huis in’t Veld, I.H.I., Backer Dirks, O. and de Stoppelaar, J.D. (1979) Some bacteriological aspects of sugar substitutes. In Health and Sugar Substitutes, ed. B. Guggenheim, Karger, Basel, pp. 192–198.Google Scholar
  52. Havenaar, R., Drost, J.D., de Stoppelaar, J.D, Huis in’t Veld, J.H.J. and Backer Dirks, O. (1984) Potential cariogenicity of Lycasin® 80/55 in comparison to starch, sucrose, xylitol, sorbitol and L-sorbose in rats. Caries Res. 18, 375–384.Google Scholar
  53. Hefti, A. (1980) Cariogenicity of topically applied sugar substitutes in rats under restricted feeding conditions. Caries Res. 14, 136–140.CrossRefGoogle Scholar
  54. Hoeven, J.S. van der (1979) Influence of disaccharide alcohols on the oral microflora. Caries Res. 13, 301–306.CrossRefGoogle Scholar
  55. Hoeven, J.S. van der (1980) Cariogenicity of disaccharide alcohols in rats. Caries Res. 14, 61–66.CrossRefGoogle Scholar
  56. Hoeven, J.S. van der (1986) Cariogenicity of lactitol in program-fed rats. Caries Res. 20, 441–443.CrossRefGoogle Scholar
  57. Hoeven, J.S. van der and Franken, H.C.M (1982) Production of acids in rat dental plaque with or without Streptococcus mutans. Caries Res. 16, 375–383.CrossRefGoogle Scholar
  58. Honkala, E. and Tala, H. (1987) Total sugar consumption and dental caries in Europe—an overview. Int. Dent. J. 37, 185–191.Google Scholar
  59. Ikeda, T. and Sandham, H.J. (1972) A high-sucrose medium for the identification of Streptococcus mutans. Arch. Oral Biol. 17, 781–783.CrossRefGoogle Scholar
  60. Imfeld. T. (1983) Identification of Low Caries Risk Dietary Components, Karger, Basel.Google Scholar
  61. Isokangas, P., Alanen, P., Tiekso, J. and Mäkkinen, K.K. (1988) Xylitol chewing gum in caries prevention: A field study in children. J. Am. Dent. Assoc. 117, 315–320.Google Scholar
  62. Isokangas, P., Tiekso, J., Alanen, P. and Mäkkinen, K.K. (1989) Long-term effect of xylitol chewing gum on dental caries. Commun. Dent. Oral Epidemiol. 17, 200–203.CrossRefGoogle Scholar
  63. Kalfas, S. and Edwardsson, S. (1990) Sorbitol-fermenting predominant cultivable flora of human dental plaque in relation to sorbitol adaptation and salivary secretion rate. Oral Microbial. Immunol. 5, 33–38.CrossRefGoogle Scholar
  64. Kalfas, S., Maki, Y., Birkhed, D. and Edwardsson, S. (1990a) Effect of pH on acid production from sorbitol in washed cell suspensions of oral bacteria. Caries Res. 24, 107–112.CrossRefGoogle Scholar
  65. Kalfas, S., Svensäter, G., Birkhed, D. and Edwardsson, S. (1990b) Sorbitol adaptation of dental plaque in people with low and normal salivary secretion rates. J. Dent. Res. 69, 442–446.CrossRefGoogle Scholar
  66. Knuuttila, M.L.E. and Mäkinen, K.K. (1975) Effect of xylitol on the growth and metabolism of Streptococcus mutans. Caries Res. 9, 177–189.CrossRefGoogle Scholar
  67. Krasse, B. (1966) Human streptococci and experimental caries in hamsters. Arch. Oral Biol. 11, 429–436.CrossRefGoogle Scholar
  68. Leach, S.A. and Green, R.M. (1980) Effect of xylitol-supplemented diets on the progression and regression of fissure caries in the albino rat. Caries Res. 14, 16–23.CrossRefGoogle Scholar
  69. Lindquist, B. and Emilson, C.G. (1990) Distribution and prevalence of mutans streptococci in the human dentition. J. Dent. Res. 69, 1160–1166.CrossRefGoogle Scholar
  70. Lingström, P., Holm, J., Birkhed, D. and Björck, I. (1989) Effects of variously processed starch on pH of human dental plaque. Scand. J. Dent. Res. 97, 392–400.Google Scholar
  71. Lingström, P., Björck, I., Drews, A. and Birkhed, D. (1991) Effects of chemically modified starches in suspensions and lozenges on pH of human dental plaque. Scand. J. Dent. Res. 99, 30–39.Google Scholar
  72. Linke, H.A.B. and Chang, C.A. (1976) Physiological effects of sucrose substitutes and artificial sweeteners on growth pattern and acid production of glucose-grown Streptococcus mutans strains in vitro. Z. Naturforsch. 31, 245–251.Google Scholar
  73. Loesche, W.J. (1986) Role of Streptococcus mutans in human dental decay. Microbial. Rev. 50, 353–380.Google Scholar
  74. Loesche, W.J., Grossman, N.S., Earnest, R. et al. (1984) The effect of chewing xylitol gum on the plaque and saliva levels of Streptococcus mutans. J. Am. Dent. Assoc. 108, 587–592.Google Scholar
  75. Lohmann, D., Gehring, F. and Katie, E.J. (1981) Fermentation of L-sorbose by microorganisms of the human dental plaque. Caries Res. 15, 263–271.CrossRefGoogle Scholar
  76. Lout, R.K., Messer, L.B., Soberay, A., Kajander, K. and Rudney, J. (1988) Cariogenicity of frequent aspartame and sorbitol rinsing in laboratory rats. 22, 237–241.Google Scholar
  77. Maki, Y., Ohta, K., Takazoe, I., Matsukubo, Y., Takaesu, Y., Topitsoglou, V. and Frostell, G. (1983) Acid production from isomaltulose, sucrose, sorbitol, and xylitol in suspensions of human dental plaque. Caries Res. 17, 335–339.CrossRefGoogle Scholar
  78. MOIler, I.J. and Poulsen, S. (1973) The effect of sorbitol-containing chewing gum on the incidence of dental caries, plaque and gingivitis in Danish schoolchildren. Commun. Dent. Oral Epidemiol. 1 58–67.Google Scholar
  79. Mouton, C., Dextraze, L. and Mäkinen, K. (1984) Xylitol-resistant isolates of S. mutans in xylitol consumers. J. Dent. Res. 63 (special issue), 212 (abstr. no. 376).Google Scholar
  80. Mühlemann, H.R., Iselin, W. and Mathaler, T.M. (1977a) Antiplaque effects of sorbose. Hely. Odontal. Acta 21, 69–74.Google Scholar
  81. Mühlemann, H.R., Schmid, R., Noguchi, T. et al. (1977b) Some dental effects of xylitol under laboratory and in vivo conditions. Caries Res. 11, 263–276.CrossRefGoogle Scholar
  82. Neff, D. (1967) Acid production from different carbohydrate sources in human plaque in situ. Caries Res. 1, 78–87.CrossRefGoogle Scholar
  83. Newbrun, E. (1967) Sucrose, the arch criminal of dental caries. Odontol. Revy. 18, 373–386.Google Scholar
  84. Newbrun, E. (1982) Sugar and dental caries: a review of human studies. Science 217, 418–423.CrossRefGoogle Scholar
  85. Newbrun, E., Hoover, C., Mettraux, G. and Graf, H. (1980) Comparison of dietary habits and dental health of subjects with hereditary fructose intolerance and control subjects. J. Am. Dent. Assoc. 101, 619–626.Google Scholar
  86. Olson, B.L. (1977) An in vitro study of the effects of artificial sweeteners on adherent plaque formation. J. Dent. Res. 56, 1426.CrossRefGoogle Scholar
  87. Ooshima, T., Izumitani, A., Sobue, S., Okahashi, N. and Hamada, S. (1983) Noncariogenicity of the disaccharide Palatinose in experimental dental caries of rats. Infect. Immun. 39, 43–49.Google Scholar
  88. Platt, D. and Werrin, S.R. (1979) Acid production from alditols by oral streptococci. J. Dent. Res. 58, 1733–1734.CrossRefGoogle Scholar
  89. Roberts, C.J., Rugg—Gunn, A.J. and Wright, W.G. (1984) The effect of human milk on human dental plaque pH and in vitro enamel dissolution. Caries Res. 18, 162 (abstr. no. 25).Google Scholar
  90. Rugg-Gunn, A.J. (1989) Lycasin® and the prevention of dental caries. In Progress in Sweeteners, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 311–329.Google Scholar
  91. Rugg-Gunn, A.J. and Edgar, W.M. (1984) Sugar and dental caries: a review of the evidence. Commun. Dent. Health 1, 85–92.Google Scholar
  92. Rölla, G., Ciardi, J.E. and Schultz, S.A. (1983) Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth. Scand. J. Dent. Res. 91, 112–117.Google Scholar
  93. Scheinin, A. (1985) Field studies on sugar substitutes. Int. Dent. J. 35, 195–200.Google Scholar
  94. Scheinin, A., Mäkinen, K.K. and Ylitalo, K. (1975a) Turku sugar studies. V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol. Scand. 33 (Suppl. 70), 67–104.Google Scholar
  95. Scheinin, A., Mäkinen, K.K., Tammisalo, E. and Rekola, M. (1975b) Turku sugar studies. XVIII. Incidence of dental caries in relation to 1-year consumption of xylitol chewing gum. Acta Odontol. Scand. 33 (Suppl. 70), 307–316.Google Scholar
  96. Shaw, J.H. (1976) Inability of low levels of sorbitol and mannitol to support caries activity in rats. J. Dent. Res. 55, 376–382.CrossRefGoogle Scholar
  97. Sheiham, A. (1983) Sugars and dental decay. Lancet i, 282–284.Google Scholar
  98. Siebert, G., Ziesenitz, S.C. and Lotter, J. (1987) Marked caries inhibition in the sucrose-challenged rat by a mixture of nonnutritive sweeteners. Caries Res. 21, 141–148.CrossRefGoogle Scholar
  99. Sreebny, L.M. (1982) Sugar availability, sugar consumption and dental caries. Commun. Dent. Oral Epidemiol. 10, 1–7.Google Scholar
  100. Stephan, R.M. (1940) Changes in hydrogen-ion concentration on tooth surfaces and in carious lesions. J. Am. Dent Assoc. 27, 718–723.Google Scholar
  101. Stephan, R.M. (1966) Effects of different types of human foods on dental health in experimental animals J. Dent Res. 45, 1551–1561.CrossRefGoogle Scholar
  102. Söderling, E., Mäkinen, K.K., Chen, C.Y. et al. (1989) Effect of sorbitol, xylitol and xylitollsorbitol chewing gums on dental plaque. Caries Res. 23, 378–384.CrossRefGoogle Scholar
  103. Takazoe, I. (1989) Palatinose—an isomeric alternative to sucrose. In Progress in Sweeteners, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 143–167.Google Scholar
  104. Tanzer, J.M. (ed.) (1981) Animal Models in Cariology. Microbiol. Abstr. (Sp. Suppl.), Information Retrieval, Ltd., Washington, DC.Google Scholar
  105. Tanzer, J.M. and Slee, A.M. (1983) Saccharin inhibits tooth decay in laboratory models, J. Am. Dent. Assoc. 106, 331–333.Google Scholar
  106. Topitsoglou, V., Birkhed, D., Larsson, L.A. and Frostell, G. (1983) Effect of chewing gums containing xylitol, sorbitol or a mixture of xylitol and sorbitol on plaque formation, pH changes and acid production in human dental plaque. Caries Res. 17, 369–378.CrossRefGoogle Scholar
  107. Topitsoglou, V., Sasaki, N., Takazoe, I. and Frostell, G. (1984) Effect of frequent rinses with isomaltulose (Palatinose®) solution on acid production in human dental plaque. Caries Res. 18, 47–51.CrossRefGoogle Scholar
  108. Vadeboncoeur, C., Trahan, L., Mouton, C. and Mayrand, D. (1983) Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J. Dent. Res. 62, 882–884.CrossRefGoogle Scholar
  109. Waaler, S.M., Assev, S. and Rölla, G. (1985) Metabolism of xylitol in dental plaque. Scand. J. Dent. Res. 93, 218–221.Google Scholar
  110. Wennerholm, K. and Emilson, C. G. (1989) Effect of sorbitol-and xylitol-containing chewing gum on salivary microflora, saliva, and oral sugar clearance. Scand. J. Dent Res. 97, 257–262.Google Scholar
  111. Ziesenitz, S.C. and Siebert, G. (1986) Nonnutritive sweeteners as inhibitors of acid formation by oral microorganisms. Caries Res. 20, 498–502.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • K. Wennerholm
  • C.-G. Emilson
  • D. Birkhed

There are no affiliations available

Personalised recommendations