Advertisement

Natural high potency sweeteners

  • S.-H. Kim
  • G. E. Dubois

Abstract

It is almost certain that since early in time the sense of sweet taste has directed both man and animals to nutritive substances. Thus taste perception probably played an essential role for survival. From an evolutionary view point, it is also likely that plants took advantage of this aspect of sweet taste to propagate their species by producing sweet fruits and other edible parts. Thus, on a volume basis, most natural sweet substances are carbohydrates from plants. However, it is also apparent that some non-carbohydrate compounds have accidentally acquired a sweet taste with no nutritive intention. Most natural sweeteners belong to this category. In modern times, at least for most people of the Western world, the attainment of adequate nourishment has not been an issue, and sweet taste perception has been sought after for the alternative purpose of giving pleasure and enjoyment. In fact, twentieth-century man is more likely than not to consume excess calories. This overnourished population has increasingly succumbed to obesity and to illnesses which are favored by excess calorie consumption (e.g. cardiovascular disease, diabetes, cancer, etc.). Therefore non-nutritive sweeteners have assumed increasing importance in modern days. This chapter covers natural high-potency sweeteners, their synthetic modificants and high-potency sweeteners constituted of natural sub-units. Specifically excluded are carbohydrate sweeteners, which, though ubiquitous in nature, are of trivial sweetness potency. Among many reviews on sweeteners, a recent one (van der Wel et al., 1987) gives extensive coverage to carbohydrate sweeteners as well as many non-natural sweeteners. This chapter covers protein sweeteners (by S.-H. Kim) and non-protein sweeteners such as peptide sweeteners, terpenoid sweeteners, and polyketide sweeteners (by G.E. DuBois). Since interest in sweeteners is proportional to their viability for use in food products, the sweeteners discussed in this review will generally be described relative to the properties requisite for commercial viability. A detailed dissertation on these properties is provided in Section 6.6 and the reader is referred to it for clarification of any points not apparent in earlier sections. In the sweetener literature, various methods have been employed for reporting sweetness potencies. This complication is discussed in detail in Section 6.6. We have recalculated sweetness potencies in some cases, for the purpose of placing all data on the same scale. The recalculation methodology employed is described in Section 6.6.

Keywords

Sweet Taste Taste Quality Acceptable Daily Intake Steviol Glycoside Flavor Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, E.M. and Stone, H. (1976). Potential new artificial sweetener from study of structure-taste relationships. Science 193, 584–586.CrossRefGoogle Scholar
  2. Arakawa, H., and Nakazaki, M. (1959). Absolute configuration of phyllodulcin. Chem. Ind. (London), 671Google Scholar
  3. Asahina, Y. and Asano, J. (1931) Uber die Konstitution von Hydrangeol und Phyllodulcin. IV. Mitteil: Synthese des Phyllodulcin-dimethylathers, Chem. Ber. 64, 1252–1256.Google Scholar
  4. Asahina, Y. and Ueno, E. (1916) Phyllodulcin, a Chemical Constituent of Amacha (Hydrangea thunbergi Sieb.). J. Pharm. Soc. Jpn. 408.Google Scholar
  5. Baldwin, R.E. and Korschgen, B.M., (1979) Intensification of fruit-flavors by aspartame. J. Food Sci. 44, 938–939.CrossRefGoogle Scholar
  6. Barreau and van der Wel (1983) The effect of thaumatins on the chemotactic behaviour of Escherichia coll. Chemical Senses 8, 71–80.CrossRefGoogle Scholar
  7. Beynon, R. and Cusack, M. (1990) Thaumatin not protedytic (letter). Nature, 344, 498.CrossRefGoogle Scholar
  8. Blum, R.B., Gardlik, J.M., Janusz, J.M. and Rizzi, G.P. (1987) Alpha-L-Aspartyl-D-Heteroaromatic-substituted glycine esters and amides useful as high intensity sweetenersGoogle Scholar
  9. U.S. Patent 4,692,513 (to The Procter and Gamble Company) September 8, 1987.Google Scholar
  10. Bohak, Z. and Li, S.-L. (1976) The structure of monellin and its relation to the sweetness of the protein. Biochim. Biophys. Acta 427 153–170.CrossRefGoogle Scholar
  11. Brennan, T.M. and Hendrick, M.E. (1983) Branched amides of L-aspartyl-D-amino acid dipeptides, U.S. Patent 4,411,925 (to Pfizer, Inc.).October 25, 1983.Google Scholar
  12. Brouwer, J.N., Hellekant, G., Kasahara, Y., van der Wel, H. and Zotterman, Y. (1987) Electrophysiological study of gustatory effects of sweet proteins monellin and thaumatin in monkey, guinea pig and rat. Acta Physiol. Scan. 89, 550–557.CrossRefGoogle Scholar
  13. Burton, E.G., Schoenhard, G.L., Hill, J.A., Schmidt, R.E., Hribar, J.D., Kotsonis, F.N. and Oppermann, J.A. (1989) Identification of N-li-L-Aspartyl-L-phenylalanine as a normal constituent of human plasma and urine, J. Nutr. 119, 713–721.Google Scholar
  14. Butchko, H.H. and Kotsonis, F.N., (1989) Aspartame: review of recent research, Comments on Toxicology 3 (4), 253–278.Google Scholar
  15. Cagan, R.H. and Morris, R.N. (1976) The sulhydral group of monellin; its chemical reactivity and importance to the sweet taste. Proc. Soc. Exp. Biol. Med. 152, 635–640.CrossRefGoogle Scholar
  16. Chang, S.S. and Cook, J.M. (1983) Stability studies of stevioside and rebaudioside A in carbonated beverages. J. Agric. Food Chem. 31, 409–412.CrossRefGoogle Scholar
  17. Chemical Marketing Reporter (1989) December 25 Issue, Schnell Publishing Company, New York, N.Y.Google Scholar
  18. Choi, Y.-H., Kinghorn, A.D., Sid, X., Zhang, H., and Teo, B.K. (1989) Abrusoside A: a new type of highly sweet triterpene glycoside. J. Chem. Soc., Chem. Commun. 887–888.Google Scholar
  19. Code of Federal Regulations (1988) Title 21 (Food and Drugs) Section 182.1, pp. 385–6 (April 1, 1988 ).Google Scholar
  20. Code of Federal Regulations (1989) Title 21 (Food and Drugs), Section 570.30, p 611 (April 1, 1989).Google Scholar
  21. Compadre, C.M., Pezzuto, J.M., Kinghorn, A.D., and Kamath, S.K. (1985) Hernandulcin: An intensely sweet compound discoverd by review of ancient literature. Science 227, 417–419.CrossRefGoogle Scholar
  22. Compadre, C.M., Robbins, E.F., and Kinghorn, A.D. (1986) The intensely sweet herb Lippia dulcis trev.: historical uses, field inquiries and constituents. J. Ethnopharmacology 5, 89–106.CrossRefGoogle Scholar
  23. Compadre, C.M., Hussain, R.A., Lopez de Compadre, R.L., Pezzuto, J.M. and Kinghorn, A.D. (1987) The intensely wweet sesquiterpene hernandulcin: isolation, synthesis, characterization and preliminary safety evaluation. J. Agric. Food Chem., 35, 273–279.CrossRefGoogle Scholar
  24. Compadre, C.M., Hussain, R.A., Lopez de Compadre, R.L., Pezzuto, J.M. and Kinghom, A.D. (1988) Analysis of structural features responsible for the sweetness of the sequiterpene hrnandulcin. Experientia 44, 447–449.CrossRefGoogle Scholar
  25. Comelissen, B.J., Hooft van Huijsduijnen, R.A. and Bol, J.F. (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321, 531–532.CrossRefGoogle Scholar
  26. Crammer, B. and Ikan, R., (1987) Progress in the chemistry and properties of rebaudioside, in Developments in Sweeteners-3. T.H. Grenby, ed., Elsevier Applied Science, New York, N.Y., pp. 45–81.Google Scholar
  27. Danse, M., Mizutani, K., Kasai, R., Tanaka, O., Kitahata, S., Okada, S., Ogawa, S., Murakami, F., and Chen, F.-H. (1984) Enzymic transglucsylation of rubusoside and the structure-sweetness-relationship of steviol-bisglycosides. Agric. Biol. Chem. 48, 2483–2488.CrossRefGoogle Scholar
  28. de Vos, A.M., Hatada, M., van der Wel, H., Krabbendam, H., Peerdemann, A. F., and Kim, S.-H. (1985) Three-dimensional structure of thaumatin I, an intensely sweet protein, Pro. Natl. Acad. Sci. USA 82, 1406–1409.CrossRefGoogle Scholar
  29. Drenth, J., Low, B.W., Richardson, J.S., and Wright, C.S. (1980) The toxin-agglutin fold, J. Biol. Chem. 255, 2652–2655.Google Scholar
  30. DuBois, G.E., Crosby, G.A., and Stephenson, R.A., (1981a) Dihydrochalcone sweeteners. a study of the atypical temporal phenomena. J. Med. Chem. 24, 408–428.CrossRefGoogle Scholar
  31. DuBois, G.E. (1981b) Dynapol Company, Palo Alto, CA. unpublished results.Google Scholar
  32. DuBois, G.E. Dietrich, P.S., Lee, J.F., McGarraugh, G.V., and Stephenson, R.A., (1981d) Diterpenoid sweeteners. synthesis and sensory evaluation of stevioside analogues nondegradable to steviol. J. Med. Chem. 24, 1269–1271.CrossRefGoogle Scholar
  33. DuBois, G.E., (1982a) in Annual Reports in Medicinal Chemistry, 17, H-J. Hess, Ed., Academic Press, New York, N.Y., 323–332.Google Scholar
  34. DuBois, G.E., and Stephenson, R.A., (1982b) Dihydrochalcone sweeteners. synthesis, sensory evaluation, and chiral eluant chromatography of the D and L antipodes of a potently sweet, sucrose-like homoserine-dihydrochalcone conjuagate. J. Agric. Food Chem. 30, 676–681.CrossRefGoogle Scholar
  35. DuBois, G.E., and Lee, J.F., (1983) A simple technique for the evaluation of temporal taste properties. Chemical Senses 7, 237–246.CrossRefGoogle Scholar
  36. DuBois, G.E., Bunes, L.A., Dietrich, P.S., and Stephenson, R.A. (1984) Diterpenoid sweeteners. Synthesis and sensory evaluation of biologically stable analogues of stevioside. J. Agric. Food Chem. 32, 1321–1325.CrossRefGoogle Scholar
  37. DuBois, G.E. and Stephenson, R.A. (1985a) Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogues with improved organoleptic properties. J. Med. Chem. 28, 93–98.CrossRefGoogle Scholar
  38. DuBois, G., and Muller, G. (1985b) The NutraSweet Company, Mount Prospect, IL unpublished results.Google Scholar
  39. Edens, L., Deslinga, L., Klok, R., Ledeboer, A.M., Maat, J., Toonen, M.Y., Visser, C. and Verripo, C.T. (1982) Cloning of the cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Eschericia coll. Gene 18, 1–12.Google Scholar
  40. Eguchi, I., (1988) Sweet substance in hen egg proteins. Japanese patent application 63–48298 (to Azinomoto Kaisha) February 29, 1988.Google Scholar
  41. Esaki, S., Tanaka, R., and Kamiya, S. (1984) Synthesis and taste of certain steviol glycosides. Agric. Biol. Chem. 48, 1831–1834.CrossRefGoogle Scholar
  42. Fahlberg, C. and Remsen, I., (1879) Uber die xydation des orthotoluosulfamids. Berichte 12, 469–473.Google Scholar
  43. Farkas, L., Nogrady, M., Gottsegen, A., and Antus, S. (1973) Neue 1,3-diphenyl-propano-1 Derivate and ihre Salz bzw. diese Verbindungen enthaltende Versussungmittel. German Patent 2,258,304 (to Chinoin Gyogyszer es Vegyeszeti Termekek Gyara RT) July 5, 1973. Federal Register (1985). 50, (99), (May 22 issue), pp. 21043–21045.Google Scholar
  44. Frank, G. and Zuber, H. (1976) The complete amino acid sequences of both subunits of the sweet protein monellin. Z. Physiol. Chem. 357, 585–592.CrossRefGoogle Scholar
  45. Fujino, M., Wakimasu, M., Mano, M., Tanaka, K., Nakajima, N., and Aoki, H., (1976) Structure-taste relationships of L-aspartyl-aminomalonic acid diesters, Chem. Pharm. Bull, 24 (9), 2112–2117.CrossRefGoogle Scholar
  46. Fukunaga, Y., Miyata, T., Nakayasu, N., Mizutani, K., Kasai, R., and Tanaka, O. (1989) Enzymic transglucosylation products of stevioside: separation and sweetness evaluation. Agric. Biol. Chem. 53, 1603–1607.CrossRefGoogle Scholar
  47. Fuller, W.D., Goodman, M., and Verlander, M.S. (1985) A new class of amino acid based sweeteners, J. Am. Chem. Soc. 107, 5821–5822.CrossRefGoogle Scholar
  48. Guignet, E. (1885) De l’existence de la glycyrrhizine dans plusieurs familles vegetales. C.R. Hebd. Seances Acad. Sci. 100, 151.Google Scholar
  49. Hashimoto, Y., Ishizone, H. and Ogura, M.. (1980) Periandrin II and IV, triterpene glycosides from Periandra dulcis. Phytochemistry 19, 2411.CrossRefGoogle Scholar
  50. Hashimoto, Y., Ogura, M., and Ishizone, H. (1982a) Periandrin extracted from plants of the genus Periandra. U.S. Patent 4,320,225 (March 16, 1982 ).Google Scholar
  51. Hashimoto, Y., Ohta, Y., Ishizone, H., Kuriyama, M., and Ogura, M. (19826) Periandri III, a novel sweet triterpene glycoside from Periandra dulcis. Phytochemistry 21 2335–2337.Google Scholar
  52. Hashimoto, Y, Ishizone, H., Suganuma, M., Ogura, M., Nakatsu, K. and Yoshioka, H. (1983) Periandrin I, a sweet triterpene-glycoside from Periandra dulcis. Phytochemistry 22, 259–264.CrossRefGoogle Scholar
  53. Helgren, F.J. (1957) U.S. Patent 2,803,551 (to Abbott Laboratories) August 20, 1957.Google Scholar
  54. Higginbotham, J.D. and Hough, C.A.M. (1977) Useful taste properties of amino acids and proteins. In Sensory Properties of Foods, eds G.C. Birch, J.G. Brennan and K.J. Parker, Applied Sciences, London, pp. 129–149.Google Scholar
  55. Higginbothan, J., Lindley, M., Stephens, P. (1981) Flavour potentiating properties of thalin sweetener (Thamatin), in The Quality of Foods and Beverages, G. Charlambous and G. E. Inglett, eds., Academic Press, New York.Google Scholar
  56. Higginbothan, J.D. (1983) Protein sweeteners in Developments in Sweeteners-2, T.H. Grenby, K.J. Parker, and M.G. Lindley, eds., Applied Science Publ., London.Google Scholar
  57. Homier, B.E., (1984) Aspartame: implications for the food scientist in Aspartame, Physiology and Biochemistry, L.D. Stegink and L. J. Filer, Jr., Eds., Marcel Dekker, Inc., New York, N. Y., pp. 247–262.Google Scholar
  58. Horowitz, R.M., and Gentili, B. (1963) Dihydrochalcone derivatives and their use as sweetening agents. U.S. Patent 3,087,821 (April 30, 1963 ).Google Scholar
  59. Horowitz, R.M. (1964) Relations between the taste and structure of some phenolic glycosides, in Biochemistry of Phenolic Compounds, Harborne, J.B., Ed., Academic Press, New York, N.Y., p. 545–571.Google Scholar
  60. Horowitz, R.M. and Gentili, B. (1969) Taste and structure in phenolic glycosides, J. Agric. Food Chem. 17, 696–700.CrossRefGoogle Scholar
  61. Horowitz, R.M., and Gentili, B. (1974) Dihydrochalcone sweeteners, in Symposium: Sweeteners, Inglett, G.E., Ed., Avi Publ., Westport, Conn., Chapter 16.Google Scholar
  62. Horowitz, R.M. (1986) Dihydrochalcone sweeteners from citrus flavanones, in Alternate Sweeteners, O’Brien-Nabors, L. and Gelardi, R.C., Eds., Marcel Dekker, Inc., New York, N.Y. Chapter 7.Google Scholar
  63. Hough, C.A.M. and Edwardson, J. A. (1978) Antibodies to thaumatin as a model of the sweet taste receptor. Nature 271, 381–383.CrossRefGoogle Scholar
  64. Hudson, G. and Biemann, K. (1976) Mass Spectrometric sequencing of proteins: the structure of subunit I of monellin Biochem. Biophys. Res. Comm. 71, 212–220.CrossRefGoogle Scholar
  65. Hyvonen, L. and Koivistoinen, P., (1982), Fructose in food systems, in Nutritive Sweeteners, G.G. Birch and K.J. Parker, Eds., Applied Science Publishers, Englewood, N.J., pp. 135–137.Google Scholar
  66. Iacobucci, G.A., Sweeney, J.G., and King III, J.G. (1988) Intensely sweet L-aspartyl-3(bicycloalkyl)-L-alanine alkyl esters, U.S. Patent 4,788,069 (to the Coca Cola Company) November 29, 1988.Google Scholar
  67. Inglett, G.E., Krbechek, L., Dowling, B., and Wagner, R. (1969) Dihydrochalcone sweeteners–sensory and stability evaluation. J. Food Sci. 34, 101–103.CrossRefGoogle Scholar
  68. Iyengar, B., Smits, P., van der Ouderaa, F., van der Wel, H. and van Browersharen, J. (1979) Eur. J. Biochem, 96, 193–204.CrossRefGoogle Scholar
  69. Jizba, J., and Herout, V. (1967) Plant substances XXVI. Isolation of constituents of common polypody rhizomes (Polypodium vulgare L.). Collect. Czech. Chem. Common. 32, 2867–2874.CrossRefGoogle Scholar
  70. Jizba, J., Dolejs, L., Herout, V., and Sorm, F. (1971) Structure of osladin-the sweet principle of the rhizomes of Polypodium vulgare L., Tetrahedron Lett., 1329–1332.Google Scholar
  71. Kamiya, S., Konishi, F., and Esaki, S. (1979) Synthesis and taste of some analogs of stevioside. Agric. Biol. Chem. 43, 1863–1867.CrossRefGoogle Scholar
  72. Kang, C.-H. (1988) Structural and biochemical studies of intensely sweet molecules (Ph. D. dissertation) University of California at Berkeley, May, 1988.Google Scholar
  73. Kasai, R., Hirono, S., Chou, W.-H., Tanaka, O., and Chen, F.-H. (1988) Sweet dihydroflavonol rhamnoside from leaves of Engelhardtia chrysolepis, a Chinese folk medicine, Hung-qi. Chem. Pharm. Bull. 36, 4167–4170.CrossRefGoogle Scholar
  74. Kasai, R., Kaneda, N., Tanaka, O., Yamasaki, K, Sakamoto, I., Morimoto, K., Okada, S., Kitahata, S., and Furukawa, H., (1981) Sweet dierpene-glycosides of leaves of Stevia rebaudiana bertoni-synthesis and structure-sweetness relationship of rebaudiosides-A,-D,E and their related glycosides. J. Chem. Soc. of Japan, Chem. Ind. Chem., 726–735.Google Scholar
  75. Kasai, R., Matsumoto, K., Nie, R-L., Morita, T., Awazu, A., Zhou, J., and Tanaka, O. (1987) Sweet and bitter cucurbitane glycosides from Hemsleya Carnosiflora. Phytochemistry 26, 1371–1376.CrossRefGoogle Scholar
  76. Kim, J., Pezzuto, J.M., Soejarto, D.D., Lang, F.A., and Kinghorn, A.D. (1988) Polypodoside A, an intensely sweet constituent of the rhizomes of Polypodium Glycyrrhiza. J. of Nat. Products 51, 1166–1172.CrossRefGoogle Scholar
  77. Kim, J., and Kinghorn, A.D. (1989). Further steroidal and flavonoid constituents of the sweet plant, Polypodium Glycyrrhiza. Phytochemistry 28, 1225–1228.CrossRefGoogle Scholar
  78. Kim, S.-H., Kang, C.-H., Kim, R., Chu, J.M., Lee, Y.-B. and Lee, T.-K. (1989) Redesigning a sweet protein: increased stability and renaturability. Protein Engineering 2, 571–575.CrossRefGoogle Scholar
  79. Kinghorn, A.D. and Soejarto, D.D. (1986) Sweetening agents of plant origin. CRC Critical Reviews in Plant Sciences 4, 79–120.CrossRefGoogle Scholar
  80. Kinghorn, A.D., Compadre, C.M., and Pezzuto, J.M. (1989). Low cariogenic sweetening agents. U.S. Patent 4,808,409 (to University of Illinois), February 28, 1989.Google Scholar
  81. Kitahata, S., Ishikawa, H., Miyata, T., and Tanaka, O. (1989a) Production of rubososide derivatives by transgalactosylation of various a-galactosidases. Agric. Biol. Chem. 53, 2929–2934.CrossRefGoogle Scholar
  82. Katahata, S., Ishikawa, H., Miyata, T., and Tanaka, O. (1989b) Production of rubusoside derivatives by transgalactosylation of various ß-galactosidases. Agric. Biol. Chem. 53, 2923–2928.CrossRefGoogle Scholar
  83. Kobayashi, M., Horikawa, S., Degrandi, I.H., Ueno, J., Mitsuhashi, H. (1977) Dulcosides A and B, new diterpene glycosides from Stevia rebaudiana. Phytochemistry 16, 1405–1408.CrossRefGoogle Scholar
  84. Krbechek, L., Inglett, G., Holik, M., Dowling, B., Wagner, R. and Riter, R. (1968) Dihydrochalcones. Synthesis of potential sweetening agents. J. Agric. Food Chem. 16, 108–112.CrossRefGoogle Scholar
  85. Kusama, S., Kusakabe, I., Nakamura, Y., Eda, S., and Murakami, K. (1986) Transglucosylation into stevioside by the enzyme system from Streptomyces sp. Agric. Biol. Chem. 50, 2445–2451.CrossRefGoogle Scholar
  86. Lee, C.-H (1975) Intense sweetener from Lo Han Kuo (Momordica grosvenori). Experimentia 31, 533–534.CrossRefGoogle Scholar
  87. Lee, J.H., Weickham, J.L., Kodiuri, R.R., Ghosh-Dasidar, P., Saito, K., Blair, L.C., Date, T., Lai, J.S., Holleberg, S.M. and Kendall, R.L. (1988) Expression of synthetic thaumatin genes in yeast. Biochemistry 27, 5101–5107.CrossRefGoogle Scholar
  88. Lythgoe and Trippett, (1950) The consitution of the dissacharide of glycyrrhinic acid. J. Chem. Soc., 1983–1990.Google Scholar
  89. Machado, A. (1941) Chemical study of Brazilian licorice. Rev. Soc. Brasil. Quim. 10, 101Maruzen Kasei Company Ltd., Onomichi, Japan (1980) Utilization of stevia extracts to food industry (Internal Publication).Google Scholar
  90. Mazur, R.H., Schlatter, J.M., and Goldkamp, A.H (1969) Structure-taste relationships of some dipeptides. J. Am. Chem. Soc. 91, 2684–2691.CrossRefGoogle Scholar
  91. Meilgaard, M., Vance Civile, G., and Carr, B.T., (1987) Sensory evaluation techniques, Volume II, CRC Press, Inc., Boca Raton, Fla., pp. 5–6.Google Scholar
  92. Merck Index, (1983) Tenth Edition, M. Windholz, Ed., Merck and Co., Inc., Rhaway, N.J., 7029, p. 1030.Google Scholar
  93. Mikulec, R. (1990) The NutraSweet Company, Mount Prospect, IL. Unpublished Results.Google Scholar
  94. Mitoma, C., Acton, E.M., DeGraw, J.I., and Thomas, D.W. (1985) Metabolic and toxicologic study of an artificial sweetener, oxime V. Drug and Chemical Toxicology 8, 195–206.CrossRefGoogle Scholar
  95. Mizutani, K., Miyata, T., Kasai, R., Tanaka, O., Ogawa, S., and Doi, S. (1989) Study on improvement of sweetness of steviol bisglycosides: selective enzymic transglucosylation of the 13–0-glycosyl moiety. Agric. Biol. Chem. 53, 395–398.CrossRefGoogle Scholar
  96. Morris, J.A. and Cagan, R.H. (1972) Purification of monellin, sweet principal in Discoreophyllm cuminsii. Biochim. Biophys. Acta 261, 114–122.CrossRefGoogle Scholar
  97. Morris, R.N., Cagan, R.H., Martenson, R.E. and Deibler, G. (1978) Methylation of the lysine residues of monellin. Proc. Soc. Exp. Biol. Med. 157 194–199.CrossRefGoogle Scholar
  98. Moskowitz, H.R. (1983) Product Testing and Sensory Evaluation of Foods, Food and Nutrition Press, Inc., Westport, Conn., pp. 110–120.Google Scholar
  99. Nanayakkara, N.P.D., Hussain, R.A., Pezzuto, J.M., Soejarto, D.D., and Kinghom, A.D. (1988) An intensely sweet dihydroflavonol derivative based on a natural product lead compound. J. Med. Chem. 31, 1250–1253.CrossRefGoogle Scholar
  100. Nofre, C. and Tinti, J.M. (1987) Sweetening agents, U.S. Patent 4,645,678 (to Universite Claude Bernard, Lyon, France) February 24, 1987.Google Scholar
  101. NutraSweet Technical Applications Manual (1987) Section I, p.5, The NutraSweet Company, 1751 West Lake Cook Road, Deerfield, Il.Google Scholar
  102. O’Brien-Naors, L. and Inglett, G.E. (1982) In Nutritive Sweeteners, G.G. Birch and K.J. Parker, eds. Applied Science Publishers, Englewood, N.J., pp. 311–313.Google Scholar
  103. Ogata, C. (1987) X-ray crystal structure determination of monellin, an intensely sweet protein (ph.D. dissertation) University of California at Berkeley, December 1987.Google Scholar
  104. Ogata, C., Hatada, M., Tomlinson, G., Shin, W.-C. and Kim, S.-H (1987) Crystal structure of the intensely sweet protein monellin Nature (London) 328, 739–742.CrossRefGoogle Scholar
  105. Pecore, S., Booth, B., Walters, E., DuBois, G., Carr, B.T., Gibes, K., Brands, L., Schiffman, S., and Warwick, Z., (1989) unpublished results. The NutraSweet Company, Mount Prospect, Il. Flavor attribute intensities were estimated by a trained panel of 15–20 subjects relative to intensity standards on a scale of 0–15 for each attribute (sweet: sucrose, bitter: caffeine, salty: sodium chloride, sour: citric acid, metallic: ferrous sulfate, etc.). Data reported are mean values. Sweetness intensity (I) data were obtained at several concentrations (C) thus allowing the determination of C-I functions. Least squares curve fitting methods were used to fit the data to the Michaelis-Menton type function I = In,C/(K50+C) where I. is the maximum sweetness intensity in units of percent sucrose equivalence and K50 is the concentration which results in a half-maximal sweetness intensity.Google Scholar
  106. Pezzuto, J.M., Compadre, C.M., Swanson, S.M. Nanayakkara, N.P.D., and Kinghorn, A.D., (1985) Metabolically activated steviol, the aglycone of stevioside, is mutagenic. Proc. Natl. Acad. Sci. USA 82, 2478–2482.CrossRefGoogle Scholar
  107. Phillips, K.C., (1987) Stevia: steps in developing a new sweetener, in Developments in Sweeteners-3, T.H. Grenby, Ed. Elsevier Applied Science, New York, N.Y., pp. 1–43.Google Scholar
  108. Reisch, J., and Dawidar, A.M. (1978) Detection of osladin in the aerial parts of Polypodium vulgare L., Sci. Pharm. 46, 281–283.Google Scholar
  109. Rennie, E.H., (1886) Glycyphyllin, the sweet principle of Smilax glycyphylla. J. Chem. Soc. 49, 857–864.CrossRefGoogle Scholar
  110. Richardson, M., Valdes-Rodriguez, S. and Bianco-Labra, A. (1987) A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature 327, 432–434.CrossRefGoogle Scholar
  111. Roak-Foltz, R., and Leveille, G.A., (1984) Projected aspartame intake: daily ingestion of aspartic acid, phenylalanine and methanol, In Aspartame Physiology and Biochemistry, Stegink, L.D., and Filer, Jr., L.J. Eds., Marcel Dekker, Inc., New York, N.Y., Chapter 9, pp. 201–205.Google Scholar
  112. Ronk, R.J. (1978), Regulatory Constraints on Sweetener Use, in Sweeteners and Dental Caries, Shaw, J.H., and Roussos, G.G., Eds., Information Retrieval Inc., Washington D.C., pp. 131–144.Google Scholar
  113. Russell, D.R. and Bennet, G.N. (1982) Construction and analysis of in vivo activity of E. coli promoter hybrids and promoter mutants that alter the -35 and -10 spacing. Gene 20, 231–235.CrossRefGoogle Scholar
  114. Schultz, H.W. 1981. Food Law Handbook, Avi Publishing Company, Inc., Westport, Conn.Google Scholar
  115. Soejarto, D.D., Kinghom, A.D. and Farnsworth, N.R. (1982) Potential sweetening agents of plant origin III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness. Journal of Natural Products 45, 590–599.CrossRefGoogle Scholar
  116. Stegink, L.D. and Filer, L.J., Jr. (1984) Aspartame Physiology and Biochemistry,L.D. Stegink and L.J. Filer, Jr., Eds. Marcel Dekker, Inc., New York, N.Y, pp 29–199 and 289–653.Google Scholar
  117. Stone, H., Sidel, J.L., Oliver, S., Woolsey, A., and Singleton, R. (1974) Sensory evaluation by quantitative descriptive analysis. Food Technology 28, 24–34.Google Scholar
  118. Suzuki, H, Ikeda, T., Matsumoto, T., and Noguchi, M. (1977) Isolation and identification of phyllodulcin and skimmin from the cultured cells of amacha (Hydrangea macrophylla Seringe Var. Thumbergii Makino), Agric. Biol. Chem. 41, 719–720.CrossRefGoogle Scholar
  119. Tachibana, Y., Hashimoto, Y., Hagiwara, Y., Konishi, T, and Kurokawa, N. (1974) The auantitative analysis of phyllodulcin in `Amacha’ (Sweet Hydrangea) by means of thin-layer chromatography, Yakugaku Zasshi 94, 1167–1169Google Scholar
  120. Tahara, A., Nakata, T., and Ohtsuka, Y. (1971) New type of compound with strong sweetness. Nature (London) 233, 619.CrossRefGoogle Scholar
  121. Takemoto, T., Arihara, S., Nakajima, T. and Okuhira, M. (1983a) Studies on the constituents of fructus momordicae. I. On the sweet principle. Yakugaku Zasshi 103, 1151–1154.Google Scholar
  122. Takemoto, T., Arihara, S., Nakajima, T., and Okuhira, M. (1983b) Studies on the constituents of fructus momordicae. II. structure of sapogenin. Yakugaku Zasshi 103, 1155–1166.Google Scholar
  123. Takemoto, T., Arihara, S., Nakajima, T., and Okuhira, M. (1983c) Studies on the constituents of fructus momordicae. III. structure of mogrosides. Yakugaku Zasshi 103, 1167–1173.Google Scholar
  124. Takeuchi, N., Murase, M., Ochi, K., and Tobinaga, S., (1980) Biogenetic-type synthesis of (±) phyllodulcin, a sweet principle of Hydrangea serrata Seringe var. thunbergii Sugimoto. (Studies on the (3-carbonyl compounds connected with the ß-polyketides. VI.). Chem. Pharm. Bull., 28, 3013–3019.CrossRefGoogle Scholar
  125. Tanaka, T., Yamasaki, K., Kohda, H., Tanaka, O. and Mahato, S.B. (1980) Dihydrochalcone-glucosides as sweet principles of Symplocos ssp. Planta Med. (Suppl.) 81–83.Google Scholar
  126. Tanaka, T., Kawamura, K., Kohda, H., Yamasaki, K., and Tanaka, O. (1982) Glycosides of the leaves of Symplocos spp. (Symplocaceae), Chem. Pharm. Bull. 30, 2421–2423.Google Scholar
  127. Tanaka, T., Tanaka, O., Lin, Z.-W., Zhou, J., and Ageta, H. (1983) Sweet and bitter glycosides of the Chinese plant drug, Bai-Yun-Shen (Roots of Salvia Digitaloides). Chem. Pharm. Bull. 31, 780–783.CrossRefGoogle Scholar
  128. Tanaka, T., Kohda, H., Tanaka, O., Chen, F.-H., Chou, W.-H., and Leu, J.- L. (1981) Rubusoside (3-D-glucosyl ester of 13-O13-D-glucosyl-steviol), a sweet principle of Rubus chingii Hu (Rosaceae). Agric. Biol. Chem. 45, 2165–2166.CrossRefGoogle Scholar
  129. Tanaka, T., Tanaka, O., Lin, Z.-W.., and Zhou, J., (1985) Sweet and bitter principles of the Chinese plant drug, Bai-Yun-Shen: revision of the assignment of the source plant and isolation of two new diterpene glycosides. Chem. Pharm. Bull. 33, 4275–4280.CrossRefGoogle Scholar
  130. Theerasilp, S. and Kurihara, Y. (1988) Purification and structure characterization of curculin, a new type of sweet protein having taste-modifying action. 22nd Japanese Symposium on Taste and Smell (JASTS XXII), Fukuoka, Japan. Abstract: Chemical Senses 1989, 14, 319–320.Google Scholar
  131. Tsau, J.H., and Young, J.G., (1987) Heat stabilized sweetener composition containing APM, U.S. Patent 4,704,288 (to The NutraSweet Company) November 3, 1987.Google Scholar
  132. Tunmann, P., and Schehrer, F.K., (1959) Betrag Zur Chemischen Konstitution des Bryodulcosides. 3. Mitteilung über Inhaltstoffe der Wurzeln von Bryonia dioica Jacq., Arch. Pharm. 292, 745–748.CrossRefGoogle Scholar
  133. Tunmann, P., and Stapel G., (1966a) Über das Bryodulcosid. 8. Mitt. über Inhaltstoffe der Wurzel von Bryonia dioica Jacq. Arch. Pharm. 299. 596–598.CrossRefGoogle Scholar
  134. Tunmann, P, Gemer, W., and Stapel G. (1966b) Konstitution des Bryodulcosigenins. Chem. Ber. 694, 162-Google Scholar
  135. US Food and Drug Administration, Bureau of Foods (1982) Toxicological Principles for the Safety Assessment of Direct Food Additives and Color Additives used in Food. pp. 1–19.Google Scholar
  136. van der Wel, H. (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from thaumatococcus danielli Benth Eur. J. Biochem. 31, 221–225.CrossRefGoogle Scholar
  137. van der Wel, H., and Arvidson (1978) Qualitative psychphysical studies on the gustatory effects of the sweet tasting proteins yhaumatin and monellin. Chem. Senses and Flavor 3, 291–299.CrossRefGoogle Scholar
  138. van der Wel, H. and Bel (1978) Structural investigation of the sweet-tasting proteins thaumatin and monellin by immunological studies. Chem. Senses and Flavor 3, 99–104.CrossRefGoogle Scholar
  139. van der Wel, H. and Bel (1980) Enzymatic properties of the sweet-tasting proteins thaumatin and monellin after partial reduction. Eur. J. Biochem. 104, 413–418.CrossRefGoogle Scholar
  140. van der Wel, H. and Bel, W.J. (1976) Effects of arcetylation and methylation on the sweetness intensity of thaumatin I. Chem. Senses and Flavor 2, 211–218.CrossRefGoogle Scholar
  141. van der Wel, H., van der Heijen, A. and Peer, H.G. (1987) Sweeteners. Food Reviews International 3 193–268.CrossRefGoogle Scholar
  142. van der Wel, H., Larson, G., Hladik, A., Hladik, C.M., Hellekant, G. and Glaser, D. (1989) Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana bailton. Chemical Senses 14, 75–79.CrossRefGoogle Scholar
  143. Verlander, M.S., Fuller, W.D., and Goodman, M. (1986) 1,1-Diamino-alkane derived sweeteners, U.S. Patent 4, 571,345 (to Cumberland Packing Corp.) February 18, 1986.Google Scholar
  144. Vettorazzi, G., (1989) Statutory and regulatory requirements. Supranational bodies. Role of international scientific bodies, in International Food Regulation Handbook, Middlekauf, R.D., and Shubik, P., Eds., Marcel Dekker, Inc., New York, N.Y., pp. 481–505.Google Scholar
  145. Vignais, P.V., Duee, E.D., Vignais, P.M., and Huet, J. (1966) Effects of atractyligenin and its structural analogues on oxidative phosphorylation and on the translocation of adenine nucleotides in mitochondria. Biochimica et Biophysica Acta 118, 465–483.CrossRefGoogle Scholar
  146. Weickman J. L. et al. (1989) in Progress in Sweeteners, T.H. Grenby, ed., Elsevier Applied Sciences, New York, 47–69.Google Scholar
  147. Wingard, Jr., R.E., Crosby, G.A., and DuBois, G.E., (1978) Non-absorbable sweeteners, or eating the cake without having it. Chemtech 8, 616–621.Google Scholar
  148. Wingard, Jr., R.E., Brown, J.P., Enderlin, F.E., Dale, J.A., Hale, R.L., and Seitz, C.T., (1980) Intestinal degradation and absorption of the glycosidic sweeteners stevioside and rebaudioside A. Experientia 36, 519–520.CrossRefGoogle Scholar
  149. Wiseman, J.J., and McDaniel, M.R., (1989) Modification of fruit flavors by aspartame and sucrose. Presented at the Institute of Food Technology Meeting, Chicago, IL.Google Scholar
  150. Yamashita, H., Theerasilp, S., and Kurihara, Y., (1989) Purification and partial structure characterization of a new type of sweet protein having taste-modifying action, Curculin. Xth International Symposium on Olfaction and Taste, Oslo, Norway, Abstract p. 77.Google Scholar
  151. Yamato, M., Hashigaki, K., Honda, E., Sato, K., and Koyama, T., (1977) Chemical structure and sweet taste of isocoumarin and related compounds. VII. Chem. Pharm. Bull. 25, 695–699.CrossRefGoogle Scholar
  152. Yamato, M., and Hashigaki, K., (1979) Chemical structure and sweet taste of isocoumarins and related compounds. Chemical Senses and Flavour 4, 35–47.CrossRefGoogle Scholar
  153. Zanno, P.R., Barnett, R.E., and Roy, G.M. (1988) L-Aminodicarboxylic acid esters, U.S. Patent 4,766,246 (to General Foods Corporation) August 23, 1988.Google Scholar
  154. Zhong, H., (1986) In Proceedings of the Munchen-Shanghai Symposium on Peptide and Protein Chemistry, Schloss Ringberg am Tegernsee, W. Germany, p. 109.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • S.-H. Kim
  • G. E. Dubois

There are no affiliations available

Personalised recommendations