Olive Oil Analysis by Infrared and Raman Spectroscopy: Methodologies and Applications

  • Vincent Baeten
  • Ramón Aparicio
  • Niusa Marigheto
  • Reginald Wilson

Abstract

In recent years, infrared and Raman spectroscopic techniques have emerged in food analysis. The necessity of reducing the analytical time and cost, the increasing demand for in-line techniques, and the relative limit of traditional techniques to solve some analytical questions (e.g., adulteration detection) have rekindled interest in spectroscopic techniques. Further, instrumental improvements, such as the introduction of interferometry methodology, the availability of new sample-handling accessories, computer facilities, and the existence of software specially designed to extract and to use the information contained in spectra, have contributed to the development of near-infrared (NIR), mid-infrared (MIR), and Raman spectroscopy.

Keywords

Corn Iodine Aldehyde Milling Fourier Transform Infrared Spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afran, A. & Newbery, J. E. (1991). Analysis of the degree of unsaturation in edible oils by Fourier transform-infrared/attenuated total reflectance spectroscopy. Spectroscopy Int 3, 39–42.Google Scholar
  2. American Oil Chemists Society (AOCS) (1988). Official Methods and Recommended Practices of the American Oil Chemists Society, Method Cd 14–61. Champaign, IL.Google Scholar
  3. Aparicio, R. (1988). Characterization of Foods by Inexact Rules: The SEXIA Expert System. J ChemometrA 3, 175–192.CrossRefGoogle Scholar
  4. Aparicio, R., Alonso, M. V. & Morales M. T. (1996). Developments in olive oil authentication. Proceedings of Food Authenticity `96.• Method for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.Google Scholar
  5. Aparicio, R. & Baeten,V. (1998). Authentication of olive oil by FT-Raman. OCL 5 (3), 14–16.Google Scholar
  6. Aparicio, R., Montano, J. & Rodriguez-Izquierdo, G. (1977). Reactive power meter for nonsinusoidal systems. IEEE Trans Inst Meas 26, 258–260.CrossRefGoogle Scholar
  7. Arnold, R. G. & Hartung, T. E. (1971). Infrared spectroscopic determination of degree of unsaturation of fats and oils. JFood Sci 36, 166–168.CrossRefGoogle Scholar
  8. Baeten, V. (1998). Authentication of Virgin Olive Oil by FT-Raman Spectroscopy. Doctoral Thesis. Belgium: Catholic University of Louvain, UCL.Google Scholar
  9. Baeten, V. & Aparicio, R. (1997). Possibilities offered by infrared and Raman spectroscopic techniques in virgin olive oil authentication. Olivae 69 (12), 38–43.Google Scholar
  10. Baeten, V, et al. (1995) Authentication of oils and fats by infrared spectroscopy. Proceedings of the 21st World Congress and Exhibition of the International Society for Fat Research (ISF). The Hague, Holland.Google Scholar
  11. Baeten, V, et al. (1996). Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. JAgric Food Chem 44, 2225–2230.CrossRefGoogle Scholar
  12. Baeten, V., et al. (1998). Oils and fats classification by FT-Raman spectroscopy. JAgric Food Chem 46, 2638–2646.CrossRefGoogle Scholar
  13. Bailey, G. E & Horvat, R. J. (1972). Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils. JAm Oil Chem Soc 49, 494–498.CrossRefGoogle Scholar
  14. Banwell, C. N. (1994). Fundamentals of molecular spectroscopy. London: McGraw-Hill.Google Scholar
  15. Baranska, H., Labudzinska, A. & Terpinski, J. (1987). Laser Raman Spectrometry: Analytical Applications. Chichester, England: Ellis Horwood.Google Scholar
  16. Barrow, G. M. (1973). Physical Chemistry. New York: McGraw-Hill.Google Scholar
  17. Belton, P. S., et al. (1988). A rapid method for the determination of isolated trans double bonds in oils and fats using Fourier transform infrared spectroscopy combined with attenuated total reflectance. Lebensm Í iss-u-Technol 21, 153–157.Google Scholar
  18. Bernard, J. L. & Sims, L. G. (1980). IR spectroscopy for determination of total unsaturation. Ind Res Dey 8, 81–83.Google Scholar
  19. Bewig, K. M., et al. (1994). Discriminant analysis of vegetable oils by near-infrared reflectance spectroscopy. JAm Oil Chem Soc 71, 195–200.CrossRefGoogle Scholar
  20. Chapman, D. (1965). Infrared spectroscopy of lipids. JAm Oil Chem Soc 42, 353–371.CrossRefGoogle Scholar
  21. Chase, B. (1987). Fourier transform Raman spectroscopy. Anal Chem 59, 881A - 889A.Google Scholar
  22. Cho, R. K. & Iwamoto, M. (1989). The purity identification of sesame oil by near-infrared reflectance spectroscopy, pp. 142–147. Proceedings of the 2nd International Near Infrared Spectroscopy Conference, Tsukuba, Japan.Google Scholar
  23. Cook, R. D. & Weisberg, S. (1982). Residuals and Influence in Regression. London: Chapman and Hall.Google Scholar
  24. Cowe, I. A., McNicol, J. W. & Cuthbertson, D. C. (1985a). A designed experiment for the examination of techniques used in the analysis of near-infrared spectra. Part 1. Analysis of spectral structure. Analyst 110, 1227–1232.CrossRefGoogle Scholar
  25. Cowe, I. A., McNicol, J. W. & Cuthbertson, D. C. (1985b). A designed experiment for the examination of techniques used in the analysis of near-infrared spectra. Part 2. Derivation and testing of regression models. Analyst 110, 1233–1240.CrossRefGoogle Scholar
  26. Defernez, M. & Kemsley, K. (1996). Potential pitfalls of chemometric solutions to food authentication problems. Proceedings of Food Authenticity ‘86: Method for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.Google Scholar
  27. Diem, M. (1993). Introduction to Modern Vibrational Spectroscopy. New York: John Wiley & Sons.Google Scholar
  28. Dubois, J., et al. (1996). Quantitative Fourier transform infrared analysis for anisidine value and aldehydes in thermally stressed oils. JAm Oil Chem Soc 73, 787–794.CrossRefGoogle Scholar
  29. Fenton, A. J. & Crisler, R. O. (1959). Determination of cis unsaturation in oils by near-infrared spectroscopy. JAm Oil Chem Soc 36, 620–623.CrossRefGoogle Scholar
  30. Fletcher, R. & Reeves, M. (1964). Function minimization by conjugate gradients. Comput J 7, 149–154.Google Scholar
  31. Forina, M., et al. (1994). Validation procedures in near-infrared spectrometry. Anal Chim Acta 295, 109–118.CrossRefGoogle Scholar
  32. Gerrard, D. L. & Birnie, J. (1992). Raman spectroscopy. Anal Chem 64, 502R - 513R.CrossRefGoogle Scholar
  33. Geurts, M. D., Rinne, H. J. & Lawrence, S. H. (1990) Alternative methods of dealing with outliers in forecasting sales with regression-based methods. In Robust Regression: Analysis and Applications, pp. 225–239. Edited by K. D. Lawrence & J. L. Arthur. New York: Marcel Dekker.Google Scholar
  34. Goddu, R. E. (1957). Determination of unsaturation by near-infrared spectrophotometry. Anal Chem 29, 1790–1794.CrossRefGoogle Scholar
  35. Grasseli, J. G. & Bulkin, B J. (1991). Analytical Raman Spectroscopy. New York: John Wiley & Sons.Google Scholar
  36. Guillén, M. D. & Cabo, N. (1997). Infrared spectroscopy in the study of edible oils and fats. J Sci FoodAgric75, 1–11.Google Scholar
  37. Harrick, N. (1967). Internal Reflection Spectroscopy. New York: John Wiley & Sons.Google Scholar
  38. Hendra, P., Jones, C. & Warnes, G. (1991). Fourier Transform Raman Spectroscopy. Instrumental and Chemical Applications. Chichester, England: Ellis Horwood.Google Scholar
  39. Herzberg, G. (1945). Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules. New York: Van Nostrand Reinhold.Google Scholar
  40. Hirschfeld, T. & Chase, B. (1986). FT-Raman spectroscopy: Development and justification. Appl Spectroscopy 3, 133–141.CrossRefGoogle Scholar
  41. Holman, R. T. & Edmondson, P. R. (1956). Near-infrared spectra of fatty acids and some related substances. Anal Chem 28, 1533–1538.CrossRefGoogle Scholar
  42. Hooke, R. & Jeeves, E. A. (1961). Direct search solution of numerical and statistical problems. JAssoc Comput Machinery 8, 212–229.CrossRefGoogle Scholar
  43. Hourant, P. (1995). Contrôle de Qualité des Matières Grasses Alimentaires par Spectroscopie Infrarouge, pp. 1–82. Mémoire grade d’ingénieur Agronome. Louvain-la-Neuve, Belgium: Universitè Catholique de Louvain, UCL.Google Scholar
  44. International Union of Pure and Applied Chemistry (IUPAC) (1992). Standard Methods for theAnalysis of Oils, Fats and Derivatives: Method 2.207, Determination of Content of Isolated trans-Unsaturated Compounds by Infrared Spectroscopy, pp. 99–102. Edited by A. Dieffenbacher & W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  45. Ismail, A. A., et al. (1993). Rapid quantitative determination of free fatty acids in fats and oils by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 70, 335–341.CrossRefGoogle Scholar
  46. Keller, S., et al. (1993). Quality control of food with near-infrared excited Raman spectroscopy. Fresen JAnal Chem 346, 863–867.CrossRefGoogle Scholar
  47. Lai, Y. W, Kemsley, E. K. & Wilson, R. H. (1994). Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. JAgric Food Chem 42, 1154–1159.Google Scholar
  48. Lanser, A. C. et al. (1991). FTIR estimation of free fatty acid content in crude oils extracted from damaged soybeans. JAm Oil Chem Soc 68 448–449. Google Scholar
  49. Lanser, A. C. & Emken, E. A. (1988). Comparison of FTIR and capillary gas chromatographic methods for quantitation of trans unsaturation in fatty acid methyl esters. JAm Oil Chem Soc 65, 1483–1487.CrossRefGoogle Scholar
  50. Levin, I. W. & Lewis, E. N. (1990). Fourier transform Raman spectroscopy of biological materials. Anal Chem 62, 1101A - 1111A.Google Scholar
  51. Lewis, E. N., Kalasinsky, V. E & Levin, I. W. (1988). Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies. Anal Chem 60, 2658–2661.CrossRefGoogle Scholar
  52. Li-Chan, E. C. Y. (1994). Developments in the detection of adulteration of olive oil. Trends Food Sci Tech 5, 3–11.CrossRefGoogle Scholar
  53. Li-Chan, E. C. Y. (1996). The applications of Raman spectroscopy in food science, Trends Food Sci Tech 7, 361–370.CrossRefGoogle Scholar
  54. Martens, H. & Noes, T. (1989). Multivariate Calibration. Chichester, England: John Wiley & Sons. Massait, D. L. & Kaufman, L. (1983). The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis. Chichester, England: Wiley Interscience.Google Scholar
  55. McClure, W. E. (1994). Near infrared spectroscopy. In Spectroscopy Techniques for Food Analysis, pp. 13–57. Edited by R. H. Wilson. New York: Verlagsgesellchaft (VCH).Google Scholar
  56. Mossoba, M. M., Yurawecz, M. P. & McDonald, R. E. (1996). Rapid determination of the total trans content of neat hydrogenated oils by attenuated total reflection spectroscopy. JAm Oil Chem Soc 73, 1003–1009.CrossRefGoogle Scholar
  57. Muniategui, S., Paseiro, P. & Simal, J. (1992). Medida del grado de insaturación de aceites y grasas comestibles por espectroscopía infrarroja y su relación con el indice de yodo. Grasas Aceites 43, 1–5.CrossRefGoogle Scholar
  58. Noes, T. & Isaksson, T. (1989). Selection of samples for calibration in near-infrared spectroscopy. Part I: General principles illustrated by example. Appl Spectroscopy 43, 328–335.CrossRefGoogle Scholar
  59. O’Neill, R. (1971). Function minimization using a Simplex procedure. Appl Stat 3, 79–88.Google Scholar
  60. Osborne, B. G. & Fearn, T. (1986) Near-Infrared Spectroscopy in Food Analysis. New York: Longman Scientific & Technical.Google Scholar
  61. Ozaki, Y., et al. (1992). Potential of near-infrared Fourier transform Raman spectroscopy in food analysis, Appl Spectroscopy 46, 1503–1507.CrossRefGoogle Scholar
  62. Panford, J. A. & Deman, J. M. (1990). Determination of oil content of seeds by NIR: influence of fatty acid composition on wavelength selection. JAm Oil Chem Soc 67, 473–482.CrossRefGoogle Scholar
  63. Pfaffenberger, R. C. & Dielman, T. E. (1990). A comparison of regression estimators when both multicollinearity and outliers are present, pp. 243–270. In Robust Regression: Analysis and Applications. Edited by K. D. Lawrence & J. L. Arthur. New York: Marcel Dekker.Google Scholar
  64. Rabiner, L. R. & Gold, B. (1975). Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  65. Ratnayake, W. M. N. & Pelletier, G. (1996). Methyl esters from a partially hydrogenated vegetable oil is a better infrared external standard than methyl elaidate for the measurement of total trans content. JAm Oil Chem Soc 73, 1165–1169.CrossRefGoogle Scholar
  66. Sadeghi-Jorabchi, H., et al. (1990). Determination of the total unsaturation in oils and margarines by Fourier transform Raman spectroscopy. JAm Oil Chem Soc 67, 483–486.CrossRefGoogle Scholar
  67. Sadeghi-Jorabchi, H., et al. (1991). Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. Spectrochimica Acta 47A, 1449–1458.CrossRefGoogle Scholar
  68. Sato, T. (1994). Near-infrared spectroscopic analysis of deterioration indices of soybeans for process control in oil milling plant. JAm Oil Chem Soc 71, 293–298.CrossRefGoogle Scholar
  69. Sato, T., Kawano, S. & Iwamoto, M. (1991). Near-infrared spectral patterns of fatty acid analysis from fats and oils. JAm Oil Chem Soc 68, 827–833.CrossRefGoogle Scholar
  70. Savitsky, A. & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36, 1627–1630.CrossRefGoogle Scholar
  71. Schrader, B. (1996). Raman spectroscopy in the near infrared-A most capable method of vibrational spectroscopy. Fresen JAnal Chem 355, 233–239.Google Scholar
  72. Scotter, C. N. G. (1997). Non-destructive spectroscopic techniques for the measurement of food quality. Trends Food Sci Tech 8, 285–292.CrossRefGoogle Scholar
  73. Sinclair, R. G. et al. (1952). The infrared absorption spectra of saturated fatty acids and esters. JAm Oil Chem Soc 74 2578–2585. Google Scholar
  74. Skoog, D. A., West, D. M. & Holler, E J. (1992). Fundamentals of Analytical Chemistry. New York: Saunders College Publishing International Edition.Google Scholar
  75. Sleeter, R. T. & Matlock, M. G. (1989). Automated quantitative analysis of isolated (nonconjugated) trans isomers using Fourier transform infrared spectroscopy incorporating improvements in the procedure. JAm Oil Chem Soc 66, 121–127.CrossRefGoogle Scholar
  76. Socrates, G. (1994). Infrared Characteristic Group Frequencies: Tables and Charts. New York: John Wiley & Sons.Google Scholar
  77. Tabachnick, B. G. & Fidell, L. S. (1983). Using Multivariate Statistics. New York: Harper & Row.Google Scholar
  78. Ulberth, F. & Haider, H.-J. (1992). Determination of low level trans unsaturation in fats by Fourier transform infrared spectroscopy. JFood Sci 57, 1444–1447.CrossRefGoogle Scholar
  79. van de Voort, E R. (1994). FTIR spectroscopy in edible oil analysis. Inform 5, 1038–1042.Google Scholar
  80. van de Voort, E R., et al. (1992). Rapid and direct iodine value and saponification number determination of fats and oils by attenuated total reflectance/Fourier transform infrared spectroscopy. JAm Oil Chem Soc 69, 1118–1123.CrossRefGoogle Scholar
  81. van de Voort, E R., et al. (1994a). Monitoring the oxidation of edible oils by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 71, 243–253.CrossRefGoogle Scholar
  82. van de Voort, F. R., et al. (1994b). The determination of peroxide value by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 71, 921–926.CrossRefGoogle Scholar
  83. van de Voort, E R., et al. (1996). Determination of solid fat index by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 73, 411–416.CrossRefGoogle Scholar
  84. van de Voort, E R. & Ismail, A. A. (1991). Proximate analysis of foods by mid-FTIR spectroscopy. Trends Food Sci Tech 2, 13–17.CrossRefGoogle Scholar
  85. van de Voort, E. R., Ismail, A. A. & Sedman, J. (1995). A rapid automated method for the determination of cis and trans content of fats and oils by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 72, 873–880.CrossRefGoogle Scholar
  86. Wetzel, D. L. (1983). Lipid structures and NIRA. Proceedings of 4th International Symposium on Near Infrared Applications, New York.Google Scholar
  87. Williams, R. C. & Antoniszyn, J. (1987). The significance of outliers. Proceedings of the International NIR/NIT Conference, pp. 249–264. Budapest, Hungary: Akadémiai Kiadò.Google Scholar
  88. Williams, P. & Norris, K. (1987). Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereals Chemists.Google Scholar
  89. Wilson, E. B., Decius, J. C. & Cross, R. C. (1955). Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. New York: McGraw-Hill.Google Scholar
  90. Wilson, R. H. (1990). Fourier transform mid-infrared spectroscopy for food analysis. Trends Anal Chem 9, 127–131.CrossRefGoogle Scholar
  91. Wilson, R. H. & Goodfellow, B. J. (1994). Mid-infrared spectroscopy. In Spectroscopic Techniques for Food Analysis, pp. 59–85. Edited by R. H. Wilson. New York: Verlagsgesellchaft (VCH).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Vincent Baeten
  • Ramón Aparicio
  • Niusa Marigheto
  • Reginald Wilson

There are no affiliations available

Personalised recommendations