Analysis of Edible Oils

  • Apostolos Kiritsakis
  • William W. Christie


Edible oils are mainly vegetable oils that have undergone several processes to remove undesirable constituents. Most crude vegetable oils are subjected to a refining process (neutralization, bleaching, and deodorization) to make them suitable for consumption. Only olive oil, which is a natural juice, can be consumed without any refining process.


Peroxide Value Supercritical Fluid Chromatography Acid Value Equivalent Carbon Number Sensory Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasbi M., Shoeman, D. W. and Saari Csallany, A. (1993). High-performance liquid chromatography of selected phenolic compounds in olive oils. JAm Oil Chem Soc 70, 367–370.CrossRefGoogle Scholar
  2. American Oil Chemists Society (AOCS) (1987). Official Methods and Recommended Practices, 4th edn. Edited by D. Firestone. Champaign, IL: American Oil Chemists Society.Google Scholar
  3. Antoniosi Filho, N. R., Carrilho, E. and Lanças, E. M. (1993). Fast quantitative analysis of soybean oil in olive oil by high-temperature capillary gas chromatography. JAm Oil Chem Soc 70, 1051–1053.CrossRefGoogle Scholar
  4. Aparicio, R., et al. (1994). Relationship between the COI test and other sensory profiles by statistical procedures. Grasas Aceites 45, 26–41.CrossRefGoogle Scholar
  5. Aparicio, R., Alonso, V. and Morales, M. T. (1996). Developments in olive oil authentication. In Proceedings of Food Authenticity 96: Method for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.Google Scholar
  6. Aparicio, R., Calvente, J. J. and Morales, M. T. (1996). Sensory authentication of European extra-virgin olive oil varieties by mathematical procedures. J Sci Food Agric 72, 435–447.CrossRefGoogle Scholar
  7. Aparicio, R. and McIntyre, P. (1998). Oils and Fats Commodity Group. In FAIM - Food Authenticity: Issues and Methodologies. Edited by M. Lees. Nantes, France: Eurofins Scientific.Google Scholar
  8. Aparicio, R. and Morales, M. T. (1995). Sensory wheels: A statistical technique for comparing QDA panels. Application to virgin olive oil. J Sci Food Agric 67, 247–257.Google Scholar
  9. Aparicio, R., Morales, M. T. and Alonso, M. V. (1996). Relationship between volatile compounds and sensory attributes by statistical sensory wheel. JAm Oil Chem Soc 73, 1253–1264.CrossRefGoogle Scholar
  10. Baeten, V, et al. (1996). Detection of virgin olive adulteration by Fourier transform Raman spectroscopy. JAgric Food Chem 44, 2225–2230.CrossRefGoogle Scholar
  11. Berezin, O Yu., et al. (1997). Practical limitations in determining vegetable oil acid values by a novel pH-metric method. JAm Oil Chem Soc 74, 1339–1341.CrossRefGoogle Scholar
  12. Bianchi, G., et al. (1994). Chemical structure of long-chain esters from “Sansa” olive oil. JAm Oil Chem Soc 71, 365–369.CrossRefGoogle Scholar
  13. Blekas, G. and Guth, H. (1995). Evaluation and quantification of potent odorants of Greek virgin olive oils. In Food Flavors, in Generation, Analysis and Process Influence, pp. 419–427. Edited by G. Charalambous. Amsterdam: Elsevier Science.Google Scholar
  14. Blekas, G., Guth, H. and Grosch, W. (1994). Changes in the levels of olive oil odorants during ripening of the fruits. In Trends in Flavor Research, pp. 499–502. Edited by H. Maarse and D. G. Vander Heij. Amsterdam: Elsevier Sciences.Google Scholar
  15. Boskou, D. (1978). Stability of natural terpenoids in heated olive oil. GrasasAceites 29, 193–195. Boskou, D. and Morton, I. D. (1975). Changes in the sterol composition of olive oil on heating. J Sci FoodAgric 26, 1149–1153.CrossRefGoogle Scholar
  16. Capella, P. (1993). Anâlisis del aceite de oliva. Olivae 45, 24–27.Google Scholar
  17. Cert, A., et al. (1994). Formation of stigmasta-3,5-diene in vegetable oils. Food Chem 49, 287–293. Choo, Y. M., et al. (1996). Separation of crude palm oil components by semipreparative supercritical fluid chromatography. JAm Oil Chem Soc 73, 523–525.Google Scholar
  18. Christie, W. W, et al. (1991). Stereospecific analysis of triacyl-sn-glycerols via resolution of diastereomeric diacylglycerol derivatives by high-performance liquid chromatography on silica. JAm Oil Chem Soc 68, 695–701.Google Scholar
  19. Cinquanta, J., Esti, M. and Notte, E. L. (1997). Evolution of phenolic compounds in virgin olive oil during storage. JAm Oil Chem Soc 74, 1259–1264.CrossRefGoogle Scholar
  20. Codex Alimentarius Commission (1993). Proposed Draft Standard for Named Vegetable Oils, CX 1993/16, issued by the Joint FAO/WHO Food Standards Program, via delle Terme di Caracalla 00100 Rome.Google Scholar
  21. Cortesi, N., Rovellini, P. and Fedeli, E. (1990). Triglycerides of natural oils. Note 1. Riv Ital Sostanze Grasse 67, 69–73.Google Scholar
  22. Damiani, P. and Burini, G. (1980). Determination of the triglyceride composition of olive oil by a multistep procedure. JAgric Food Chem 28, 1232–1236.CrossRefGoogle Scholar
  23. Dobarganes, M. C. and Marquez-Ruiz, G. (1993). Size exclusion chromatography in the analysis of lipids. In Advances in Lipid Methodology-Two, pp. 113–137. Edited by W. W. Christie. Dundee, Scotland: Oily Press.Google Scholar
  24. European Communities (EC) (1991). Official Journal of the Commission of the European Communities. Regulation No. 2568/91, L248, September 5, 1991.Google Scholar
  25. European Communities (EC) (1995). Official Journal of the Commission of the European Communities. Regulation No. 656/95, March 29, 1995.Google Scholar
  26. Favier, J. P. et al. (1998). CO2 laser infrared optothermal spectroscopy for quantitative adulterationGoogle Scholar
  27. studies in binary mixtures of extra-virgin olive oil. JAm Oil Chem Soc 75 359–362.Google Scholar
  28. Fedeli, E. (1977). Lipids of olives. In Progress on Chemistry of Fats and other Lipids, pp. 15–74.Google Scholar
  29. Edited by E. Ralph and T. Holman Paris: Pergamon Press.Google Scholar
  30. Firestone, D. and Reina, R. J. (1996). Authenticity of vegetable oils. In Food Authentication, pp. 198–246. Edited by P. R. Ashurst and M. J. Dennis. London: Chapman and Hall.Google Scholar
  31. Firestone, D. and Sheppard, A. (1992). Determining the purity of olive oil by gas chromatography. In Advances in Lipid Methodology-One, pp. 273–322. Edited by W. W. Christie. Dundee, Scotland: Oily Press.Google Scholar
  32. Frega, N., Bocci, E. and Lercker, G. (1990). The HRGC determination of triglycerides. Ital JFood Sci 2, 257–264.Google Scholar
  33. Garcia Mesa, J. A., Luque de Castro, M. D. and Valcàrcel, M. (1993). Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil. Anal Chem 65, 3540–3542.CrossRefGoogle Scholar
  34. Goiffon, J. E, Remniac, C. and Furon, D. (1981). Application de la chromatographie liquide haute performance à l’analyse des triglycérides des corps gras. II–Grandeurs de rétention des triglycérides. Rev Fr Corps Gras 28, 199–206.Google Scholar
  35. Goldberg Federico, L., et al. (1969). Indagini sperimentali sulla struttura gliceridica dei grassi naturali. Nota III-Olea Europaea e Glycine Hispida. Riv Ital Sostanze Grasse 46, 102–105.Google Scholar
  36. Gomes, T. (1992). Oligopolymer, diglyceride and oxidized triglyceride contents as measures of olive oil quality. JAm Oil Chem Soc 69, 1219–1223.CrossRefGoogle Scholar
  37. Goodacre, R., Kell, D. B. and Bianchi, G. (1992). Neural networks and olive oil. Nature 359, 594.CrossRefGoogle Scholar
  38. Goodacre, R., Kell, D. B. and Bianchi, G. (1993). Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and artificial neural networks. J Sci Food Agric 63, 297–307.CrossRefGoogle Scholar
  39. Gracian, J. and Cota, J. (1984). Estudio cualitativo y cuantitativo de la fracción de alcoholes grasos de los aceites de oliva y de orujo. Grasas Aceites 35, 358–363.Google Scholar
  40. Guillén, M. D. and Cabo, N. (1997). Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. JAm Oil Chem Soc 74, 1281–1286.CrossRefGoogle Scholar
  41. Gutfinger, J. and Letan, A. (1974). Studies of unsaponifiables in several vegetable oils. Lipids 9, 658–663.CrossRefGoogle Scholar
  42. Guth, H. and Grosch, W. (1993). Quantitation of potent odorants of virgin olive oil by stable-isotope dilution assays. JAm Oil Chem Soc 70, 513–518.CrossRefGoogle Scholar
  43. Gutiérrez, E, et al. (1992). Bitter taste of virgin olive oil: Correlation of sensory evaluation and instrumental HPLC analysis. JFood Sci 54, 68–70.CrossRefGoogle Scholar
  44. International Olive Oil Council (IOOC) (1996a). Trade Standard Applying to Olive Oil and Olive-Pomace Oil. COUT.15 No 2/Rev. 5 Madrid, Spain.Google Scholar
  45. International Olive Oil Council (IOOC) (1996b). Spectrophoto-Metric Investigation in the Ultraviolet. COUT.20 No 19. Madrid, Spain.Google Scholar
  46. International Olive Oil Council (IOOC) (1997). Trade Standard Applying to Olive Oil and Olive-Pomace Oil. COUT.15 No 2/Rev. 6. Madrid, Spain.Google Scholar
  47. International Union of Pure and Applied Chemistry (IUPAC). (1987). Standard Methods for the Analysis of Oils, Fats, and Derivatives: Method 2501, Determination of the Peroxide Value (PV). 7th ed., pp. 199–200. Edited by C. Paquot and A. Haufenne. Oxford, England: Blackwell Scientific Publications.Google Scholar
  48. Ismail, A. A., et al. (1993). Rapid quantitative determination of free fatty acids in fats and oils by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 70, 335–341.CrossRefGoogle Scholar
  49. Itoh, T., et al. (1981). Triterpene alcohols and sterols of Spanish olive oil. JAm Oil Chem Soc 58, 545–550.CrossRefGoogle Scholar
  50. Kiosseoglou, B., Vlachopoulou, I. and Boskou, D. (1987). Esterified 4-monomethyl-and 4’4-dimethylsterols in some vegetable oils. GrasasAceites 38, 102–103.Google Scholar
  51. Kiritsakis, A. K. (1998a). Flavor components of olive oil-A review. JAm Oil Chem Soc 75, 673–681.CrossRefGoogle Scholar
  52. Kiritsakis, A. K. (1998b). Olive Oil. 2nd edn. Trumbull, CT: Food and Nutrition Press.Google Scholar
  53. Kiritsakis, A. K. and Markakis, P. (1991). Olive oil analysis. In Modern Methods of Plant Analysis: Essential Oils and Waxes,pp. 1–20. Edited by H. E Linskens and J. E Jackson. Berlin: Springer-Verlag.Google Scholar
  54. Kiritsakis, A. K. and Min, D. (1989). Flavour chemistry of olive oil. In Flavor Chemistry of Lipid Foods,pp. 196–221.Google Scholar
  55. Edited by D. Min and T. Smouse. Champaign, IL: American Oil Chemists Society. Lanzón, A., et al. (1994). The hydrocarbon fraction of virgin olive oil and changes resulting from refining. JAm Oil Chem Soc 71 285–291.Google Scholar
  56. Mahungu S. M., Hansen, S. L. and Artz, W. E. (1994). Quantitation of volatile compounds in heated triolein by static headspace capillary gas chromatography/infrared spectroscopy-mass spectrometry. J Am Oil Chem Soc 71, 453–455.CrossRefGoogle Scholar
  57. Mariani, C. and Fedeli, E. (1985). Determinazione delle forme gliceridiche presenti negli oli alimentari. Nota I: caso dell’olio di oliva. Riv Ital Sostanze Grasse 62, 3–7.Google Scholar
  58. Mariani, C. and Fedeli, E. (1993). La cromatografia de gases en el andlisis de aceite de oliva. Olivae 45, 34–39.Google Scholar
  59. Marigheto, N. A. et al. (1998). A comparison of mid-infrared and Raman spectroscopies for the authentication of edible oils. JAm Oil Chem Soc 75, 987–992.Google Scholar
  60. Matthaus, B. (1996). Determination of the oxidative stability of vegetable oils by rancimat and conductivity and chemiluminescence measurements. JAm Oil Chem Soc 73, 1039–1043.CrossRefGoogle Scholar
  61. May, W. E. and Hume, D. J. (1993). An automated gas-liquid chromatography method of measuring free fatty acids in canola. JAm Oil Chem Soc 70, 229–233.CrossRefGoogle Scholar
  62. McGill, A. S., et al. (1993). The composition and concentration of n-alkanes in retail samples of edible oils. JSci Food Agric 61, 357–362.CrossRefGoogle Scholar
  63. Min, D. B. (1983). Analyses of flavor qualities of vegetable oils by gas chromatography. JAm Oil Chem Soc 60, 544–545.CrossRefGoogle Scholar
  64. Miyake, Y., Yokomizo, K. and Matsuzaki, N. (1998). Rapid determination of iodine value by nuclear magnetic resonance spectroscopy. JAm Oil Chem Soc 75, 15–19.CrossRefGoogle Scholar
  65. Miyazawa, T., et al. (1994). Rapid estimation of peroxide content of soybean oil by measuring thermoluminescence. JAm Oil Chem Soc 71, 343–345.CrossRefGoogle Scholar
  66. Montedoro, G., Bertuccioli, M. and Anichini, E (1978). Aroma analysis of virgin olive oil by head-space (volatiles) and extraction (polyphenols) techniques. In Flavor of Foods and Beverages: Chemistry and Technology, pp. 247–281. Edited by G. Charalambous and G. E. Inglett. New York: Academic Press.Google Scholar
  67. Morales, M. T., et al. (1995). Virgin olive oil aroma: Relationship between volatile compounds and sensory attributes by Chemometrics. JAgric Food Chem 43, 2925–2931.CrossRefGoogle Scholar
  68. Morales, M. T., Aparicio, R. and Calvente, J. J. (1996). Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Fragr J11, 171–178.Google Scholar
  69. Morales, M. T., Aparicio, R. and Rios, J. J. (1994). Dynamic head-space gas chromatographic method for determining volatiles in virgin olive oil. J ChromatogrA 668, 455–462.CrossRefGoogle Scholar
  70. Mossoba, M. M., Yurawecz, M. P. and McDonald, R. E. (1996). Rapid determination of the total trans content of neat hydrogenated oils by attenuated total reflection spectroscopy. JAm Oil Chem Soc 73, 1003–1009.CrossRefGoogle Scholar
  71. Motta, L. et al. (1987).Considerazioni sull’analisi gascromatografica dei trigliceridi con utilizzo di colonne capillariRiv Ital Sostanze Grasse. 64 545–549.Google Scholar
  72. Paganuzzi, V. (1982). Applicazione della CSS-AgNO3 all’analisi degli alcoli triterpenici dell’olio d’oliva. Nota II: oli vergini ed oli di sansa greggi. Riv Ital Sostanze Grasse 59, 415–422.Google Scholar
  73. Pallotta, U. (1976). Analytic problems in the ascertainment of olive oil genuineness. In Lipid Technology, vol. 2., pp. 387–409. Edited by R. Paoletti, G. Jacini and R. Porsellati. New York: Raven Press.Google Scholar
  74. Perrin,J. L. and Naudet, M. (1983). Identification et dosage des triglycérides des corps gras naturels par CLHP. Rev Fr Corps Gras 30 279–285.Google Scholar
  75. Phillips, E. C., et al. (1984). Quantitative analysis of triglyceride species of vegetable oils by high performance liquid chromatography via a flame ionization detector. Lipids 19, 880–887.CrossRefGoogle Scholar
  76. Rahmani, M., and Csallany, A. S. (1985). Mise au point d’une méthode de chromatographie liquide à haute performance (CLHP) pour la détermination des pigments chlorophylliens dans les huiles végétales. Rev Franc Corps Gras 32, 257–259.Google Scholar
  77. Rossell, J. B. (1991). Vegetable oils and fats. In Analysis of Oilseeds, Fats and Fatty Foods, pp. 261–327. Edited by J. B. Rossell and J. L. R. Pritchard. London: Elsevier Science.Google Scholar
  78. Sacchi, R., et al. (1992). Analysis of the positional distribution of fatty acids in olive oil triacylglyc-erols by high resolution 13C-NMR of the carbonyl region. Ital JFood Sci 4, 117–123.Google Scholar
  79. Sacchi, R., et al. (1996). A high-field 1H nuclear magnetic resonance study of the minor components in virgin olive oils. JAm Oil Chem Soc 73, 747–758.CrossRefGoogle Scholar
  80. Sadeghi-Jorabchi, H., et al. (1990). Determination of the total unsaturation in oils and margarines by Fourier transform Raman spectroscopy. JAm Oil Chem Soc 67, 483–486.CrossRefGoogle Scholar
  81. Salivaras, E. and McCurdy, A. R. (1992). Detection of olive oil adulteration with canola oil from triacylglycerol analysis by reversed-phase. JAm Oil Chem Soc 69, 935–938.CrossRefGoogle Scholar
  82. Salivaras, E. and McCurdy, A. R. (1993) Adulteration of olive oil: detection through reversed-phase high performance liquid chromatography. In Food Flavors, Ingredients and Composition, pp. 279–300. Edited by G. Charalambous. Amsterdam: Elsevier Science.Google Scholar
  83. Santinelli, E, Damiani, P. and Christie, W. W. (1992). The triacylglycerol structure of olive oil determined by silver ion high-performance liquid chromatography in combination with stereospecific analysis. JAm Oil Chem Soc 69, 552–556.CrossRefGoogle Scholar
  84. Serani, A. and Piacenti, D. (1992). Kinetics of pheophytin-A photodecomposition in extra virgin olive oil. JAm Oil Chem Soc 69, 469–470.CrossRefGoogle Scholar
  85. Singleton J. A. and Stikeleather, L. E. (1995). High-performance liquid chromatography analysis of peanut phospholipids. I: Injection system for simultaneous concentration and separation of phospholipids. JAm Oil Chem Soc 72, 481–483.CrossRefGoogle Scholar
  86. Snyder, M. J. and King, J. W. (1994). Oilseed volatile analysis by supercritical fluid and thermal desorption methods. JAm Oil Chem Soc 71, 261–265.CrossRefGoogle Scholar
  87. Stefanoudaki, E., Kotsifaki, E and Koutsaftakis, A. (1997). The potential of HPLC triglyceride profiles for the classification of Cretan olive oils. Food Chem 60, 425–432CrossRefGoogle Scholar
  88. Synouri, S., et al. (1995). Estudio de las caracteristicas de los aceites de oliva vírgenes griegos. Olivae 57, 27–33.Google Scholar
  89. Tacchino, C. E. and Borgoni, C. (1983). Indagine sul contenuto di alcoli alifatici dell’olio d’oliva di presione e di estrazione. Riv Ital Sostanze Grasse 60, 575–581.Google Scholar
  90. Tateo, E., et al. (1993). New trends in the study of the merits and shortcoming of olive oil in organoleptic terms in correlation with GC/MS analysis of the aromas. In Food Flavors, Ingredients and Composition, pp. 301–311. Edited by G. Charalambous. Amsterdam: Elsevier Science.Google Scholar
  91. Terao, J. and Matsushita, S. (1977). Products formed by photosensitized oxidation of unsaturated fatty acid esters. JAm Oil Chem Soc 54, 234–238.CrossRefGoogle Scholar
  92. Toschi, T. G., Christie, W. W. and Conte, L. S. (1993). Capillary gas chromatography combined with high performance liquid chromatography for the structural analysis of olive oil triacylglycerols. J High Resol Chromatogr 16, 725–730.CrossRefGoogle Scholar
  93. Tsimidou, M. and Macrae, R. (1987). Detection and quantitative determination of adulteration of olive oil. Intern Analyst 2, 29–34.Google Scholar
  94. Tsimidou, M., Papadopoulos, G. and Boskou, D. (1992). Determination of phenolic compounds in vir- gin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chem 44, 53–60.CrossRefGoogle Scholar
  95. Tur’yan, Va I., et al. (1996). pH-metric determination of acid values in vegetable oils without titration. JAm Oil Chem Soc 73, 295–301.Google Scholar
  96. van de Voort, E R., et al. (1994). Monitoring the oxidation of edible oils by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 71, 243–253.CrossRefGoogle Scholar
  97. van de Voort, F. R., Ismail, A. A. and Sedman, J. (1995). A rapid automated method for the determination of cis and trans content of fats and oils by Fourier transform infrared spectroscopy. JAm Oil Chem Soc 72, 873–880.CrossRefGoogle Scholar
  98. Vazquez, R., Del Valle, A. J. and Del Valle, J. M. (1976). Componentes fenólicos de la aceituna. Grasas Aceites 27, 185–191.Google Scholar
  99. Viinanen, E. and Hopia, A. (1994). Reversed-phase high-performance liquid chromatography analysis of triacylglycerol autoxidation products with ultraviolet and evaporative light-scattering detectors. JAm Oil Chem Soc 71, 537–539.CrossRefGoogle Scholar
  100. Wesley, I. J., Barnes, R. J. and McGill, A. E. J. (1995). Measurement of adulteration of olive oils by near-infrared spectroscopy. JAm Oil Chem Soc 72, 289–292.CrossRefGoogle Scholar
  101. Wesley, I. J., Pacheco, F. and McGill, A. J. (1996). Identification of adulterants in olive oils. JAm Oil Chem Soc 73, 515–518.CrossRefGoogle Scholar
  102. Zamora, R., Navarro, J. L. and Hidalgo, E J. (1994). Identification and classification of olive oil by high-resolution 13C nuclear magnetic resonance. JAm Oil Chem Soc 71, 361–364.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Apostolos Kiritsakis
  • William W. Christie

There are no affiliations available

Personalised recommendations