Advertisement

Authentication

  • Ramón Aparicio

Abstract

The authenticity of products labeled as olive oils has become an important subject from both commercial and health aspects. Olive oil has recently gained in popularity because of its quality, its potential health benefits derived from its consumption, and its strict purity control. From a commercial point of view, olive oil commands high market prices because of its production costs and an increasing consumer demand. Price is a determinant factor in a permanent problem of adulteration, which is found in the case of olive oil. Adulteration takes place not only through accidental contamination during the stages of oil processing but even more often by deliberate mislabeling of less expensive products or admixtures containing less expensive oils for the purpose of financial gain.

Keywords

High Performance Liquid Chromatography Equivalent Carbon Number Trade Standard European Community Directive Current Official Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaitua, I., Posada, M. (1992). Clinical findings. In Toxic Oil Syndrome: Current Knowledge and Future Perspectives, pp. 27–38. Edited by the Sec. Assoc. Off. Anal. Chem. Copenhagen: WHO Regional Publications, European Series No. 42. Copenhagen: WHO Regional Office for Europe.Google Scholar
  2. Albi, T., et al. (1990). Valores de eritrodiol en muestras de aceite de oliva virgenes espanoles. Grasas Aceites 41, 167–170.Google Scholar
  3. Alonso, L., et al. (1997). Determination of mixtures in vegetable oils and milk fat by analysis of sterol fraction by gas chromatography. JAm Oil Chem Soc 74, 131–135.CrossRefGoogle Scholar
  4. Amr, A. S., Abu-Al-Rub, A. I. (1993). Evaluation of the Bellier test in the detection of olive oil adulteration with vegetable oils. JSci FoodAgric 61, 435–447.CrossRefGoogle Scholar
  5. American Oil Chemists Society (AOCS) (1987). Official Methods and Recommended Practices, Method Ch 7–94. Edited by D. Firestone. Champaign, IL: American Oils Chemists Society.Google Scholar
  6. American Oil Chemists Society (AOCS) (1989). Official and Tentative Methods of American Oils Chemists Society, Method Cd 14–61. Edited by D. Firestone. Champaign, IL: American Oils Chemists Society.Google Scholar
  7. Association of Official Analytical Chemistry (AOAC) (1995a). Official Methods of Analysis, 16th ed.Edited by P. A. Cunniff. Arlington, VA: Association of Official Analytical Chemistry.Google Scholar
  8. Association of Official Analytical Chemistry (AOAC) (1995b). Official Methods of Analysis, Method 936.12, 16th ed. Edited by P. A. Cunniff. Arlington, VA: Association of Official Analytical Chemistry.Google Scholar
  9. Aparicio, R. (1988). Characterization of foods by inexact rules: The Sexia expert system. J Chemometr 3, 175–192.CrossRefGoogle Scholar
  10. Aparicio, R., Alonso V. (1994). Characterization of virgin olive oils by SEXIA expert system. Pmg Lipid Res 33, 29–38.CrossRefGoogle Scholar
  11. Aparicio, R., Alonso, V., Morales M. T. (1996) Developments in olive oil authentication. Proceedings of Food Authenticity ‘86: Method for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.Google Scholar
  12. Aparicio, R., Baeten, V. (1998). Fats and oils authentication by FT-Raman. OCL 5 (4), 293–295.Google Scholar
  13. Aparicio, R., Graciani, E., Fermin, L. (1992). Chemometric study of the Hilditch theory applied to virgin olive oil. Anal Chim Acta 259, 115–122.CrossRefGoogle Scholar
  14. Aparicio, R., McIntyre, P. (1998). Fats and oils authentication. In Food Authenticity: Issues and Methodologies, pp. 1–41. Edited by M. Lees. Nantes, France: Eurofins Scientific.Google Scholar
  15. Aramendia, M. A., et al. (1983). Characterization of two new toxic compounds in denatured rapeseed oil. Ann Bromatol 4, 1–8.Google Scholar
  16. Arribas, S. (1982). The Spanish oil syndrome. Trends Anal Chem 1, 4–6.Google Scholar
  17. Aued, S., Almeida, M. I., Mancini, J. (1993). The application of derivative spectrophotometry to evaluation of olive oil. Cient Tecnol Aliment 13, 121–131.Google Scholar
  18. Baeten, V, et al. (1996). Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. JAgric Food Chem 44, 2225–2230.CrossRefGoogle Scholar
  19. Baeten, V., et al. (1998). Oils and fats classification by FT-Raman spectroscopy. JAgric Food Chem 46, 2638–2646.CrossRefGoogle Scholar
  20. Baeten, V., Aparicio, R. (1997). Possibilities offered by infrared and Raman spectroscopic techniques in virgin olive oil authentication. Olivae 69 (12), 38–43.Google Scholar
  21. Bailey, G. E, Horvat, R. J. (1972). Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils. JAm Oils Chem Soc 49, 494–498.CrossRefGoogle Scholar
  22. Barlett, J. G., Mahon, J. H. (1958). Identification of oils and the detection of oil adulteration by differential infrared spectroscopy. JAssoc Off Anal Chem 41, 450–459.Google Scholar
  23. Belton, P. (1995). How useful is spectroscopy in determining food authentication? Presented at 3rd European Symposium in Food Authenticity. Nantes, France, October 11–13.Google Scholar
  24. Biedermann, M., Grob, K., Mariani, C. (1995). On-line LC-UV-GC-FID for the determination of 67- and 08 (14)-sterols and its application for the detection of adulterated olive oils. Riv Ital Sostanze Grasse 72, 339–344.Google Scholar
  25. Biedermann, M., et al., (1996). Detection of desterolized sunflower oil in olive oil through isomerized L)7-sterols. ZLebensm Unter Forsch 202 199–204.Google Scholar
  26. Bioque, G., et al. (1994). N-Phenyllinoleamide metabolism by human polymorphonuclear leukocytes. Xenobiotica 24, 613–621.CrossRefGoogle Scholar
  27. Brumley, W. C., et al. (1985). Mass spectrometry and identification of sterols in vegetable oils as butyryl esters and relative quantitation by gas chromatography with flame ionization detection. J Assoc Off Anal Chem 68, 701–709.Google Scholar
  28. Calapaj R, Chiricosta S., Saija G. (1993). Valutazione di risultanze analitiche gascromatografiche e spettrofotometriche nell’accertamento della presenza di oli di semi in campioni di olio di oliva. Riv Ital Sostanze Grasse 70, 585–594.Google Scholar
  29. Capella, P. (1993). Anâlisis del aceite de oliva. Olivae 45 (2), 24–27.Google Scholar
  30. Casadei, E. (1987). Primi risultati sulla ricerca di adulterazione degli oli di oliva per aggiunta di olio di nocciole o oli esterificati mediante analisi dei trigliceridi. Riv Ital Sostanze Grasse 64, 373–376.Google Scholar
  31. Chiricosta, S., et al. (1996). EEC analytical methods and derivative spectrophotometry examination in the analysis of olive oils. Riv Ital Sostanze Grasse 73, 11–21.Google Scholar
  32. Chiricosta S., Saija, G., Calapaj, R. (1993). Three-dimensional representation of second order derivative parameters of vegetable oils. Riv Ital Sostanze Grasse 70, 549–552.Google Scholar
  33. Christie, W. W. (1992). Advances in Lipid Methodology-One. Ayr, Scotland: Oily Press.Google Scholar
  34. Christie, W W (1993). Advances in Lipid Methodology-Two. Ayr, Scotland: Oily Press.Google Scholar
  35. CodexAlimentarius Commission (1993). Proposed draft standard for named vegetable oils. CX 1993/16. Issued by the Joint FAO/WHO Food Standards Program, via delle Terme di Caracalla 00100 Rome. 516 HANDBOOK OF OLIVE OILGoogle Scholar
  36. Cortesi, N., Rovellini, R. A., Fedeli, E. (1990). I trigliceridi degli oli naturali. Nota I. Riv Ital Sostanze Grasse 67, 69–73.Google Scholar
  37. Cortesi, N., Rovellini, R, Fedeli, E. (1992). Valutazione globale di qualità di oli e grassi. Nota I: Studio della componente trigliceridica. Riv Ital Sostanze Grasse 69, 1–6.Google Scholar
  38. Dionisi, F., Prodolliet, J., Tagliaferri, E. (1995). Assessment of olive oil adulteration by reversed-phase high-performance liquid chromatography/amperometric detection of tocopherols and tocotrienols. JAm Oil Chem Soc 72, 1505–1511.CrossRefGoogle Scholar
  39. European Communities (EC) (1987). Official Journal of the Commission of the European Communities. Regulation No. 2658/87, L256, September 9, 1987.Google Scholar
  40. European Communities (EC) (1991). Official Journal of the Commission of the European Communities. Regulation No. 2568/91, L248, September 5, 1991.Google Scholar
  41. European Communities (EC) (1992). Official Journal of the Commission of the European Communities. Regulation No. 1429/92, L150, May 26, 1992.Google Scholar
  42. European Communities (EC) (1994). Official Journal of the Commission of the European Communities. Regulation No. 2632/94, L280, October 29, 1994.Google Scholar
  43. European Communities (EC) (1995). Official Journal of the Commission of the European Communities. Regulation No. 656/95, L 69, March 29, 1995.Google Scholar
  44. European Communities (EC) (1997). Official Journal of the Commission of the European Communities, Regulation No. 2472/97, L341, December 11, 1997.Google Scholar
  45. Eisner, J., et al. (1965). Gas chromatography of unsaponifiable matter. III. Identification of hydrocarbons, aliphatic alcohols, tocopherols, triterpenic alcohols, and sterols present in olive oil. JAssoc Off Anal Chem 48, 417–433.Google Scholar
  46. El-Hamdy, A. H., El-Fizga, N. K. (1995). Detection of olive oil adulteration by measuring its authenticity factor using reversed-phase high-performance liquid chromatography. J Chromatogr A 708, 351–355.CrossRefGoogle Scholar
  47. El-Hamdy, A. H., Perkins, E. G. (1981). High performance reversed phase cromatography of natural triglyceride mixtures:critical pair separation. J Am Oil Chem Soc 58, 867–872.CrossRefGoogle Scholar
  48. Fellat-Zarrouck, K., Bouteiller, J. C., Maurin, R. (1988). Recherche par CLHP de quelques adulterations de l’huile d’olive par des huiles de graines. Rev Fr Corps Grass, 35, 383–385.Google Scholar
  49. Firestone, D. (1993). Fats and oils. JAssoc Off Anal Chem Int76, 133–136.Google Scholar
  50. Firestone, D., et al. (1985). Detection of adulterated and misbranded olive oil products. JAm Oils Chem Soc 62, 1558–1562.CrossRefGoogle Scholar
  51. Firestone, D., Carson, K. L., Reina, R. J. (1988). Update on control of olive oil adulteration and misbranding in the United States. JAm Oils Chem Soc, 66, 788–792.CrossRefGoogle Scholar
  52. Federation of Oils, Oil Seeds and Fats Association (FOSFA) International (1989). Standard Contractual Methods. London: Federation of Oils, Oilseeds and Fats Associations Ltd.Google Scholar
  53. Flor, R. V., Hecking, L. T., Martin, B. D. (1993). Development of high-performance liquid chromatography criteria for determination of grades of commercial olive oils. Part I. The normal ranges for the triacylglycerols. JAm Oil Chem Soc 70, 199–203.CrossRefGoogle Scholar
  54. Frega, N., Bocci, E., Lercker, G. (1990). The HRGC determination of triglycerides. Ital I Food Sci 4, 257–264.Google Scholar
  55. Galanos, D. S., Kapoulas, V. M., Voudouris, E. C. (1968). Application de la spectrophotometrie ultra-violette dans la region des 315 nm au controle des huile. Detection de la falsification de l’huile d’olive par les huiles de grignons. Rev Fr Corps Gras 15, 291–300.Google Scholar
  56. Garcia, J., Aparicio, R. (1993). Triacylglycerol determination based on fatty acid composition using chemometrics. Anal Chim Acta 271, 293–298.CrossRefGoogle Scholar
  57. Gegiou, D., Georgouli, M. (1983). A rapid argentation TLC method for detection of reesterified oils in olive and olive-residue oils. JAm Oils Chem Soc 60, 833–835.CrossRefGoogle Scholar
  58. Goodacre, R., Kell, D. B., Bianchi, G. (1992). Neural networks and olive oil. Nature 359, 594.CrossRefGoogle Scholar
  59. Grob, K., et al. (1994a). Recognition of adulterated oils by direct analysis of the minor components. Fat Sci Technol 96 (8), 286–290.Google Scholar
  60. Grob, K., et al. (1994b). The detection of adulteration with desterolized oils. Fat Sci Technol 96 (9), 341–345.Google Scholar
  61. Grob, K., et al. (1995). Adulterated olive oils from the Swiss market 1993–1995. Riv Rai Sostanze Grasse 72, 525–528.Google Scholar
  62. Grob, K., Bronz, M. (1994). Analytical problems in determining 3,5-stigmastadiene and campestadiene in edible oils. Riv Ital Sostanze Grasse 71, 291–295.Google Scholar
  63. Gunstone, F. D. (1967). An Introduction to the Chemistry and Biochemistry of Fatty Acids and their Glycerides, pp. 168–171. London: Chapman and Hall.Google Scholar
  64. Gurr, M. I. (1986). Trans-fatty acids. Metabolic and nutritional significance. BNF Nutr Bull 11, 105–122.CrossRefGoogle Scholar
  65. Hourant, R. (1995). Contrôle de Qualité des Matières Grasses Alimentaires par Spectroscopie Infrarouge. Mémoire grade d’ingénieur Agronome. Belgium: Université Catholique de Louvain.Google Scholar
  66. International Olive Oil Council (íOOC) (1990). Method COI/T.20/Document No. 8 Determination of Tetrachloroethylene in Olive Oils by Gas-Liquid Chromatography. Madrid.Google Scholar
  67. International Olive Oil Council (IOOC) (1991). Method COI/T.20/Document No. 9 Theoretical ECN42 and ECN44 Triglyceride Composition in Olive Oils. Madrid.Google Scholar
  68. International Olive Oil Council (IOOC) (1992a). Method COI/T.20/Document No. 10 Determination of the Composition and Content of Sterols by Capillary-Column Gas Chromatography. Madrid.Google Scholar
  69. International Olive Oil Council (IOOC) (1992b). Method COI/T20/Document No. 10–5.1 Determination of the Composition and Content of Sterols by Capillary-Column Gas Chromatography. Madrid.Google Scholar
  70. International Olive Oil Council (íOOC) (1994a). Method COI/T.20/Document No. 11 Determination of Stigmastadienes in Vegetable Oils. Madrid.Google Scholar
  71. International Olive Oil Council (IOOC) (1994b). Method COI/T. 15/Document No. 2/Rev. 3 Organoleptic Assessment of Virgin Olive Oil. Madrid.Google Scholar
  72. International Olive Oil Council (IOOC) (1995). Method COI/T.20/Document No. 16 Determination of Sterenes in Refined Vegetable Oils. Madrid.Google Scholar
  73. International Olive Oil Council (IOOC) (1996a). Method COI/T.20/Document No. 17 Determination of trans Unsaturated Fatty Acids by Capillary-Column Gas Chromatography. Madrid.Google Scholar
  74. International Olive Oil Council (IOOC) (1996b). Method COI/T.20/Document No. 18 Determination of Wax Content by Capillary-Column Gas-Liquid Chromatography. Madrid.Google Scholar
  75. International Olive Oil Council (IOOC) (1996c). Method COI/T.20/Document No. 19 SpectrophotoMetric Investigation in the Ultraviolet. Madrid.Google Scholar
  76. International Olive Oil Council (IOOC) (1996d). Trade Standard Applying to Olive Oil and Olive-Pomace Oil. COI/T.15/NC No. 2/Rev. 5 of 20 November 1996. Madrid.Google Scholar
  77. International Standards Organisation (ISO) (1987). Geneva, ISO/DIS, Draft International Standard, No. 3596–2.Google Scholar
  78. International Standards Organisation (ISO) (1990a). Geneva, ISO/DIS, Draft International Standard, No. 5508–9.Google Scholar
  79. International Standards Organisation (ISO) (1990b). Geneva, ISO/DIS, Draft International Standard, No. 660.Google Scholar
  80. International Union of Pure and Applied Chemistry (IUPAC) (1992a). Determination of content of isolated trans-unsaturated compounds by infrared spectrophotometry. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.207, 7th ed., pp. 99–102. Edited by A. Dieffeanbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  81. International Union of Pure and Applied Chemistry (IUPAC) (1992b). Determination of erythrodiol content. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.431. 7th ed., pp. 188–198. Edited by A. Dieffeanbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  82. International Union of Pure and Applied Chemistry (IUPAC) (1992c). Determination of the peroxide value (RV.). In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.501. 7th ed., pp. 199–200. Edited by A. Dieffeanbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  83. International Union of Pure and Applied Chemistry (IUPAC) (1992d). Determination of the moisture and volatile matter. Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.601. 7th ed., pp. 223–224. Edited by A. Dieffeanbacher, W D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  84. International Union of Pure and Applied Chemistry (IUPAC) (1992e). Determination of the insoluble impurities. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.604. 7th ed., pp. 230–231. Edited by A. Dieffeanbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  85. International Union of Pure and Applied Chemistry (IUPAC) (1992f). Determination of copper, iron and nickel by direct graphite furnace atomic absorption spectrometry. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.631. 1st supplement to 7th ed. Edited by A. Dieffeanbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  86. International Union of Pure and Applied Chemistry (IUPAC) (1992g). Determination of fatty acids in the 2-position in the triglycerides of the oils and fats. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.210. 7th ed., pp. 111–115. Edited by C. Paquot, A. Haufenne. Oxford, England: Blackwell Scientific Publications.Google Scholar
  87. International Union of Pure and Applied Chemistry (IUPAC) (1992h). Determination of the composition of triglycerides in vegetable oils in terms of their partition number by high performance liquid chromatography (HPLC). In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.324. 1st supplement to 7th ed. Edited by A. Dieffenbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  88. International Union of Pure and Applied Chemistry (IUPAC) (1992i). Determination of individual triglycerides in oils and fats by high performance liquid chromatography. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.325. 1st supplement to 7th ed. Edited by A. Dieffenbacher, W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  89. International Union of Pure and Applied Chemistry (IUPAC) (1992j). Determination of tocopherols and tocotrienols in vegetable oils and fats by high performance liquid chromatography. In Standard Methods for the Analysis of Oils, Fats and Derivatives, Method 2.432. 1st supplement to 7th ed. Edited by A. Dieffenbacher, W D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  90. Kafatos, A., Comas, G. (1991) Efectos biológicos del aceite de oliva sobre la salud de las personas. In El Aceite de Oliva, pp. 199–223. Edited by A. K. Kiritsaki. Madrid: Madrid Vicente.Google Scholar
  91. Kapoulas, V. M., Andrikopoulos, N. K. (1987). Detection of virgin olive oil adulteration with refined oils by second-derivative spectrophotometry. Food Chem 23, 183–192.CrossRefGoogle Scholar
  92. Kapoulas, V. M., Passaloglou-Emmanouilidou, S. (1981). Detection of adulteration of olive oil with seed oils by a combination of column and gas liquid chromatography. JAm Oil Chem Soc 58, 694–697.CrossRefGoogle Scholar
  93. Lai, Y. W, Kemsley, E. K., Wilson, R. H. (1994). Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. JAgric Food Chem 42, 1154–1159.CrossRefGoogle Scholar
  94. Lai, Y. W, Kemsley, E. K., Wilson, R. H. (1995). Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chem 53, 95–98.CrossRefGoogle Scholar
  95. Lanzón, A., et al. (1994). The hydrocarbon fraction of virgin olive oil and changes resulting from refining. JAm Oils Chem Soc 71, 285–291.CrossRefGoogle Scholar
  96. Lanzón, A., Albi, T., Cert, A. (1989). Detección de la presencia de aceite de oliva refinado en el aceite de oliva virgen. Grasas Aceites 40, 385–388.Google Scholar
  97. Lawson, H. W (1994). Food Oils and Fats: Technology, Utilization and Nutrition. New York: Chapman and Hall.Google Scholar
  98. Lees, M. (1996). Food Authenticity: Issues and Methodologies. Internal report, European Communities Commission AIR3–CT94–2452.Google Scholar
  99. León, M., Lanzón, A. (1992). Aceites de oliva virgen espanoles discriminados por la Comunidad Económica Europea, pp. 11–12. Proceedings 2nd Congreso Internacional de Química de la ANQUE. Burgos, Spain.Google Scholar
  100. León-Camacho, M. (1997). Isomerizatión cis-trans de los àcidos grasos en la desodorización de aceites comestibles. Ph.D. Thesis. University of Seville, Spain.Google Scholar
  101. León-Camacho, M. (1998). Personal communication.Google Scholar
  102. León-Camacho, M., Cert, A. (1994). Recomendaciones para la aplicación de algunos metodos analíticos incluidos en el reglamento CEE 2568/91 relativo a las caracteristicas de los aceites de oliva y de orujo de oliva. GrasasAceites 45, 395–401.CrossRefGoogle Scholar
  103. Li-Chan, E. (1994). Development in the detection of adulteration of olive oil. Trends Food Sci Technol 5, 3–11.CrossRefGoogle Scholar
  104. Mariani, C. (1987). I problemi del controllo di qualità. Riv Ital Sostanze Grasse 64, 325–333.Google Scholar
  105. Mariani, C., et al. (1991). Sulla la formazione di acidi grassi trans nel processo di reffinazione dell’olio di oliva lampante. Riv Ital Sostanze Grasse 68, 455–459.Google Scholar
  106. Mariani, C., et al. (1992). Valutazione delle variazioni indotte dalla decolorazione sui principali componenti minori liberi de esterificati dell’olio de oliva. Riv Ital Sostanze Grasse 69, 393–399.Google Scholar
  107. Mariani, C., et al. (1993). Strutto vergine e strutto raffinato: Loro differenziazione analitica. Riv Ital Sostanze Grasse 70, 275–278.Google Scholar
  108. Mariani, C., Fedeli, E., Morchio, G. (1987). Sul contenuto di eritrodiolo assoluto quale possibilità di individuare il sansa nell’olio di oliva. Riv Ital Sostanze Grasse 64, 359–363.Google Scholar
  109. Mariani, C., Venturini, S. (1996). Sull’aumento delle cere durante la conservazione degli oli di oliva. Riv Ital Sostanze Grasse 73, 489–498.Google Scholar
  110. Mariani, C., Venturini, S., Grob, K. (1995). Individuazione dell’olio di girasole alto oleico desterolato nell’olio d’oliva. Riv Ital Sostanze Grasse 72, 473–482.Google Scholar
  111. Marini, D., et al. (1990). Analisi spettrofotofluorimetrica dell’olio di oliva. Possibilità de applicazione. Riv Ital Sostanze Grasse 67, 95–99.Google Scholar
  112. Martens H., Nms T. (1989). Multivariate Calibration. Chichester, England: John Wiley, Sons.Google Scholar
  113. Morchio, G., et al. (1989). Individuazione di particolari oli rettificati in oli vergini di oliva. Riv Ital Sostanze Grasse 66, 251–257.Google Scholar
  114. Mordret, E, Coustille, J. L., Lacoste, E. (1997). Methodes physico-chimiques d’analyse des huiles d’olive. OCL 4, 364–369.Google Scholar
  115. Moreda, W, Pérez Camino, M. C., Cert, A. (1995). Determinacfon de algunos paràmetros de pureza en aceites de oliva. Resultados de un estudio colaborativo. Grasas Aceites 46, 279–284.Google Scholar
  116. Paganuzzi, V. (1997). Sulle attuali possibili sofisticazioni dell’olio di oliva. Riv Ital Sostanze Grasse 74, 49–58.Google Scholar
  117. Passaloglou-Emmanouilidou, S. (1990). A comparative study of UV spectrophotometric methods forGoogle Scholar
  118. detection of olive oil adulteration by refined oils. Z Lebensm UntersForsch 191 132–134.Google Scholar
  119. Perkins, E. G. (Ed.) (1991). Analyses of Fats, Oils and Lipoproteins. Champaign, IL: American Oils Chemists Society.Google Scholar
  120. Proto, M. (1992). Indagine sui contenuti di acido linoleico e trilinoleina in alcuni oli di semi e di oliva. Ind Aliment 31, 36–38.Google Scholar
  121. Rossell, J. B. (1986). Classical analysis of oils and fat. In Analysis of Oils and Fats, pp. 261–327. Edited by R. J. Hamilton, J. B. Rossell. London: Elsevier Applied Science.Google Scholar
  122. Sacchi, R., et al. (1992). Analysis of the positional distribution of fatty acids in olive oil triacylglycerols by high resolution 13C-NMR of the carbonyl region. Ital I Food Sci 4, 117–123.Google Scholar
  123. Salivaras, E., McCurdy, A. R. (1992). Detection of olive oil adulteration with canola oil from triacylglycerol analysis by reversed-phase high-performance liquid chromatography. JAm Oils Chem Soc 69, 935–938.CrossRefGoogle Scholar
  124. Sanchiz, J., Rodriguez, J. (1991). Rapid HPLC procedure for the detection of adulteration of olive oils by seed oils. Alimentaria 28, 27–29.Google Scholar
  125. Scotter, C., Wilson, R. (1997). Infrared spectroscopy. In Analytical Methods of Food Authentication, pp. 76–96. Edited by P. R. Ashurst and M. J. Dennis. London: Chapman and Hall.Google Scholar
  126. Serani, A., Piacenti, D. (1992). I fenomeni chimico-fisici che regolano la perdita degli steroli liberi durante la raffinazione degli oli vegetali. Riv Ital Sostanze Grasse 69, 311–315.Google Scholar
  127. Sinouri, S., et al. (1995). Influence of certain cultivars on the composition of olive pomace oils. Note I: triglycerides and fatty acids. Riv Ital Sostanze Grasse 72, 483–491.Google Scholar
  128. Tabachnick, B. G. and Fidell, L. S. (1983). Using Multivariate Statistics, pp. 292–330. New York: Harper and Row.Google Scholar
  129. van de Voort, E R., et al. (1992). Rapid and direct iodine value and saponification number determination of fats and oils by attenuated total reflectance/Fourier transform infrared spectroscopy. JAm Oils Chem Soc 69, 1118–1123.CrossRefGoogle Scholar
  130. van de Voort, E R., Ismail, A. A., Sedman, J. (1995). A rapid, automated method for the determination of cis and trans content of fats and oils by Fourier transform infrared spectroscopy. JAm Oils Chem Soc 72, 873–880.CrossRefGoogle Scholar
  131. Wesley, I. J., Barnes, R. J., McGill, A. E. J. (1995). Measurement of adulteration of olive oils by near-infrared spectroscopy. JAm Oils Chem Soc 72, 289–292.CrossRefGoogle Scholar
  132. Wesley, I. J., Pacheco, E, McGill, A. E. J. (1996). Identification of adulterants in olive oils. JAm Oils Chem Soc 73, 515–518.Google Scholar
  133. Zamora, R., Navarro, J. L., Hidalgo, E J. (1994). Identification and classification of olive oils by high-resolution Nuclear Magnetic Resonance. JAm Oils Chem Soc, 71, 361–364.CrossRefGoogle Scholar
  134. Zupan, J., et al. (1988). Building knowledge into an expert system. Chem Int Lab Syst 4, 307–314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ramón Aparicio

There are no affiliations available

Personalised recommendations