Skip to main content

Olive Oil Oxidation

  • Chapter
Handbook of Olive Oil

Abstract

Lipids play an important role in the metabolism of cells by providing a source of energy and reserve storage materials. The main processes leading to the deterioration of lipids are hydrolytic rancidity, or lipolysis, and oxidative rancidity, or oxidation. In olive oil, the former usually begins while the oil is in the fruit, whereas the latter is mainly produced during the extraction process and storage (Kiritsakis 1990). Rancid fat derives from a wide variety of chemical substances. Human taste buds are highly sensitive to some compounds, such as lactones and free fatty acids, so only minute amounts of these compounds are needed to spoil the taste of a food. Although hydrolytic rancidity, which is caused by the release of free fatty acids from glycerides, is extremely important in determining how a product tastes, it is unlikely to be of any nutritional significance because fats are enzymically hydrolyzed in the small intestine before they are absorbed. In some cases, hydrolytic rancidity is regarded as desirable. Oxidative rancidity, however, leads to the formation of both unpalatable and toxic compounds and is thus nutritionally undesirable (Sanders 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alter, M., Gutfinger, T. (1982). Phospholipids in several vegetable oils. Riv Ital Sostanze Grasse 59, 14–18.

    CAS  Google Scholar 

  • Angerosa, F.,et al (1995). GC-MS evaluation of phenplic compound in virgin oils, J Agric Food Chem 43, 1082–1807

    Article  Google Scholar 

  • Angerosa, E, Di Giacinto, L. (1993). Oxidation of virgin olive oil by metals: Mn and Ni. Rev Fr Corps Gras 40, 41–48.

    CAS  Google Scholar 

  • Aparicio, R., et al. (1998). Detection of rancid defect in virgin olive oil by the electronic nose. Internal Report IGS-TM-100698, Instituto de la Grasa, Seville, Spain.

    Google Scholar 

  • Aparicio, R., Alonso, V., Morales, M. T. (1996). Developments in olive oil authentication. Proceedings of Food Authenticity ‘96: Methods for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.

    Google Scholar 

  • Aparicio, R., Morales, M. T. (1998). Characterization of olives ripeness by green aroma compounds of virgin olive oil. J Agric Food Chem 46, 1116–1122.

    Article  CAS  Google Scholar 

  • Aparicio, R., Morales, M. T., Alonso, M. V. (1996). Relationship between volatile compounds and sensory attributes of olive oils by the sensory wheel. J Am Oil Chem Soc 73, 1253–1264.

    Article  CAS  Google Scholar 

  • Baur, C., et al. (1977). Enzymatic oxidation of linoleic acid: Formation of bitter tasting fatty acids. Z Lebensm Unters Forsch 164, 171–176.

    Article  CAS  Google Scholar 

  • Bellus, D. (1978). Quenchers of singlet oxygen-A critical review. In Singlet Oxygen Reactions with Organic Compounds and Polymers, pp. 61–110. Edited by B. Ranby, J. F. Rabek. New York: John Wiley, Sons.

    Google Scholar 

  • Biermann, V., Wittmann, A., Grosch, W. (1980). Occurrence of bitter hydroxy fatty acids in oat and wheat. Fette Seifen Anstrichm 82, 236–240.

    Article  CAS  Google Scholar 

  • Bradley, D. G., Min, D. B. (1992). Singlet oxygen oxidation of foods. Crit Rev Food Sci Nutr 31, 211–236.

    Article  CAS  Google Scholar 

  • Carlsson, D. J., Suprunchuk, W., Wiles, D. M. (1976). Photooxidation of unsaturated oils: Effects of singlet oxygen quenchers. J Am Oil Chem Soc 53, 656–659.

    Article  CAS  Google Scholar 

  • Christopher, J. P., et al. (1972). Factors influencing the positional specificity of soybean lipoxygenase. Biochem Biophys Acta 289, 82–87.

    Article  CAS  Google Scholar 

  • Clark, J. P., Hunsicker, J. C.,, Megremis, C. J. (1990). Tocopherols: Nature’s antioxidants. Food Austr 42, 262–263.

    Google Scholar 

  • Cuvelier, M. E., Richard, H., Berset, C. (1992). Comparison of the antioxidative activity of some acid-phenols: Structure-activity relationship. Biosci Biotech Biochem 56, 324–325.

    Article  CAS  Google Scholar 

  • Daniels, D. G., Martin, H. F. (1961). Isolation of a new antioxidant from oat. Nature 191, 1302–1303.

    Article  CAS  Google Scholar 

  • De Man, J. M., Tie, E, De Man, L. (1987). Formation of short chain volatile organic acids in the automated AOM method. J Am Oil Chem Soc 64, 993–995.

    Google Scholar 

  • Dobarganes, M. C., Pérez-Camino, M. C. (1988). Fatty acid composition: A useful tool for the determination of alteration level in heated fats. Rev Fr Corps Gras 35, 67–70.

    CAS  Google Scholar 

  • Dobarganes, M. C., Rios, J. J., Pérez-Camino, M. C. (1986). Relationship between the composition of vegetable oils and the volatile components produced in their thermoxidation. Grasas Aceites 37, 61–67.

    CAS  Google Scholar 

  • Dziedzic, S. Z., Hudson, B. J. E. (1984). Phenolic acids and related compounds as antioxidants for edible oils. Food Chem 14, 45–51.

    Article  CAS  Google Scholar 

  • Endo, Y., Usuki, R., Kaneda, T. (1984). Prooxidant activities of chlorophylls and their decomposition products on the photooxidation. J Am Oil Chem Soc 61, 781–784.

    Article  CAS  Google Scholar 

  • Eriksson, C. E., Qvist, J. A., Vallentin, K. (1977). Conversion of aldehydes to alcohols in liquid foods by alcohol dehydrogenase. In Enzymes in Food and Beverage Processing, pp. 132–142. Edited by R. L. Ory, A. J. St. Angelo. Champaign, IL: American Oil Chemists’ Society.

    Chapter  Google Scholar 

  • Eskin, N. A. M., et al. (1989). Stability of low linolenic acid canola oil to frying temperatures. J Am Oil Chem Soc 66, 1081–1084.

    Article  CAS  Google Scholar 

  • Eskin, N. A. M., Vaisey-Genser, M. (1989). Applications for genetically modified oils. J Am Oil Chem Soc 66, 1058–1063.

    Article  Google Scholar 

  • European Communities (EC) (1995). Official Journal of the Commission of the European Communities. Regulation No. 656/95, L69, March 29.

    Google Scholar 

  • European Communities (EC) (1997). Official Journal of the Commission of the European Communities. Regulation No. 2472/97, L341, December 12.

    Google Scholar 

  • Evans, C. D., et al. (1973). Long term storage of soybean and cottonseed salad oils. J Am Oil Chem Soc 50, 218–220.

    Article  CAS  Google Scholar 

  • Evans, C. D., Moser H. A., List, G. R. (1971). Odour and flavour responses to additives in edible oils. J Am Oil Chem Soc 48, 495–498.

    Article  CAS  Google Scholar 

  • Foote, C. S. (1968). Mechanism of photosensitized oxidation. Science 162, 963–970.

    Article  CAS  Google Scholar 

  • Foote, C. S. (1976). Photosensitized oxidation and singlet oxygen: consequences in biological system. In Free Radicals in Biology, vol. 2, pp. 85–97. Edited by W. A. Pryor. New York: Academic Press.

    Google Scholar 

  • Foote, C. S., Denny, R. W. (1970). Chemistry of singlet oxygen. J Am Oil Chem Soc 92, 5216–5218.

    Article  CAS  Google Scholar 

  • Frankel, E. N. (1962). Hydroperoxides. In Symposium on Foods: Lipids and Their Oxidation, pp. 51–78. Edited by H. W. Schultz, E. A. Day, R. O. Sinnhuber. Westport, CT: AVI Publishing Co.

    Google Scholar 

  • Frankel, E. N. (1984). Lipid oxidation: Mechanism, products and flavor significance. JAm Oil Chem Soc 61, 1908–1916.

    Article  CAS  Google Scholar 

  • Frankel, E. N. (1985). Chemistry of autoxidation: Mechanism, products and flavor significance. In Flavor Chemistry of Fats and Oils, pp. 1–37. Edited by D. B. Min, T. H. Smouse. Champaign, IL: American Oil Chemists’ Society.

    Google Scholar 

  • Frankel, E. N. (1989). The antioxidant and nutritional effects of tocopherols, ascorbic acid and 13-carotene in relation to processing of edible oils. Bibl Nutr Dieta 43, 297–312.

    Google Scholar 

  • Frankel, E. N. (1991). Recent advances in lipid oxidation. JSci FoodAgric 54, 495–511.

    Article  CAS  Google Scholar 

  • Frankel, E. N. (1993). In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends Food Sci Technol 4, 220–223.

    Article  CAS  Google Scholar 

  • Gandul-Rojas, B., Minguez-Mosquera, M. I. (1996). Chlorophyll and carotenoid composition in virgin olive oils from various Spanish olive varieties. J Sci Food Agric 72, 31–39.

    Article  CAS  Google Scholar 

  • Gardner, H. W. (1970). Sequential enzymes of linoleic acid oxidation in corn germ: Lipoxygenase and linoleate hydroperoxide isomerase. J Lipid Res 11, 311–321.

    CAS  Google Scholar 

  • Gardner, H. W. (1987). Reactions of hydroperoxides-products of high molecular weight. In Autoxidation of Unsaturated Lipids, pp. 57. Edited by H. W-S. Chan. London: Academic Press.

    Google Scholar 

  • Garssen, G. J., Vliegenthart, J. F. G., Boldingh, J. (1972). The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem J 130, 435–439.

    CAS  Google Scholar 

  • Haila, K., Heinonen, M. (1994). Action of r3-carotene on purified rapeseed oil during light storage. Lebensm 1J iss Technol 27, 573–577.

    Article  CAS  Google Scholar 

  • Heath, H. B., Reineccius, G. A. (1986). Flavor Chemistry and Technology, pp. 112–141. Westport, CT: AVI Publishing Co.

    Book  Google Scholar 

  • Henick, A. S., Benca, M. E, Mitchell, J. H. (1954). Estimation of carbonyl compounds in rancid fats and foods. JAm Oil Chem Soc 31, 881–883.

    Google Scholar 

  • Hodgins, D. (1997). The electronic nose: Sensor array-based instruments that emulate the human nose. In Techniques for Analyzing Food Aroma, pp. 331–371. Edited by R. Marsili. New York: Marcel Dekker.

    Google Scholar 

  • Holm, U. (1979). Quality Criteria for Edible Fats. SIK-Report, No. 448, pp. 79–88. Göteborg, Sweden: SIK Institute.

    Google Scholar 

  • Huang, S. W, Frankel, E. N., German, J. B. (1994). Antioxidant activity of a-and y-tocopherols in bulk oils and in oil-in-water emulsions. JAgric Food Chem 42, 2108–2114.

    Article  CAS  Google Scholar 

  • Hudson, B. J. F., Ghovami, M. (1984). Phospholipids as antioxidant synergists for tocopherols in the autoxidation of edible oils. Lebensm WIss Techno117, 191–194.

    Google Scholar 

  • Husain, S. R., Terao, J., Matsushita, S. (1986). Effect of browning reaction products of phospholipids on autoxidation of methyl linoleate. JAm Oil Chem Soc 63, 1457–1460.

    Article  CAS  Google Scholar 

  • Ingold, K. U. (1969). Peroxy radicals. Acct Chem Res 2, 1–14.

    Article  CAS  Google Scholar 

  • Interesse, E. S., Ruggiero, P., Vitagliano, M. (1971). Autoxidation of olive oil: influence of chlorophyll pigments. IndAgric 9, 318–323.

    CAS  Google Scholar 

  • International Olive Oil Council (IOOC) (1996a). Trade Standard Applying to Olive Oil and Olive Pomace Oil. COI/T.15/Document No. 2/Rev. 5. Madrid, November 20.

    Google Scholar 

  • International Olive Oil Council (IOOC) (1996b). Organoleptic Evaluation of Virgin Olive Oil. COI/T.20/Document No.15/Rev. 1. Madrid, November 20.

    Google Scholar 

  • Jawad, I. M., Kochhar, S. P., Hudson, B. J. F. (1984). The physical refining of edible oils. II. Effect on unsaponifiable components. Lebensm WIss Techno1 17, 155–159.

    CAS  Google Scholar 

  • Jung, M. Y., Min, D. B. (1990). a-, y-, S-Tocopherols effects on chlorophyll photosensitized oxidation of soybean oil. JFood Sci 56, 807–815.

    Google Scholar 

  • Jung, M. Y., Yoon, S. H., Min, D. B. (1989). Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. JAm Oil Chem Soc 66, 118–120.

    Article  Google Scholar 

  • Kiritsakis, A. (1990). Olive Oil, pp. 104–127. Champaign, IL: American Oil Chemists’ Society.

    Google Scholar 

  • Kiritsakis, A., Dugan, L R. (1985). Studies in photooxidation of olive oil. JAm Oil Chem Soc 62, 892–896.

    Article  CAS  Google Scholar 

  • Kiritsakis, A., Tsipeli, A. (1992). Relationship of the acidity of olive oil to its resistance to oxidation. Riv Ital Sostanze Grasse 69, 513–515.

    CAS  Google Scholar 

  • Kochhar, S. P. (1993). Oxidative pathways to the formation of off-flavours. In Food Taints and Off-Flavours, pp. 150–201. Edited by M. J. Saxby. London: Blackie Academic, Professional.

    Google Scholar 

  • Kress-Rogers, E. (1997). Biosensors and electronic noses for practical applications. In Handbook of Biosensors and Electronic Noses, pp. 3–39. Edited by E. Kress-Rogers. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Krishna, A. G. C., Prabhakar, J. V. (1994). Antioxidant constituents of peanut oil. JAm Oil Chem Soc 71, 1245–1249.

    Article  CAS  Google Scholar 

  • Labuza, T. P. (1971). Kinetics of lipid oxidation in foods. Crit Rev Food Sci Nutr 2, 355–395.

    Google Scholar 

  • Lea, C. H. (1952). Methods for determining peroxide in lipids. J Sci Food Agric 3, 586–588.

    Article  CAS  Google Scholar 

  • Lee, S. H., Kim, D. H. (1992). Effects of 13-carotene on the stability of soybean oil subject to autox idation and photosensitized oxidation. Food Biotechnol 1, 1–7.

    Google Scholar 

  • Lee, S. H., Min, D. B. (1990). Effects, quenching mechanism, and kinetics of carotenoids in chloro phyll-sensitized photooxidation of soybean oil. JAgric Food Chem 38, 1630–1634

    Article  CAS  Google Scholar 

  • Leone, A. M., Lallotte, E., Lamparelli, F. (1976). Analytical significance of sterol fraction of virgin olive oil. Riv Technol Aliment Nutr 6, 205–209.

    CAS  Google Scholar 

  • Mariani, C. S., Venturini, P., Fedeli, E. (1993). Determination of hydrocarbons and free and esteri fied minor components in olive oil of different classes. Riv Ital Sostanze Grasse 70, 321–327.

    CAS  Google Scholar 

  • Martin-Polvillo, M., Albi, T., Guinda, A. (1994). Determination of trace elements in edible veg etable oils by atomic absorption spectrophotometry. JAm Oil Chem Soc 71, 347–353.

    Article  CAS  Google Scholar 

  • McEwan, J. A. (1994). Consumer attitudes and olive oil acceptance: the potential consumer. Grasas Aceites 45, 9–15.

    Article  Google Scholar 

  • McMullen, L. M., et al. (1991). Ascorbyl palmitate efficacy in enhancing the accelerated storage stability of canola oil. J Food Sci 56, 1651–1654.

    Article  CAS  Google Scholar 

  • Meijboom, P. W. (1964). Relationship between molecular structure and flavour perceptibility of aliphatic aldehydes. JAm Oil Chem Soc 41, 326–328.

    Article  CAS  Google Scholar 

  • Miyashita, K., Takagi, T. (1986). Study on the oxidative rate and prooxidant activity of free fatty acids. JAm Oil Chem Soc 63, 1380–1384.

    CAS  Google Scholar 

  • Morales, M. T., Aparicio, R., Calvente, J. J. (1996). Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Fragr J 11, 171–178.

    Article  CAS  Google Scholar 

  • Morales, M. T., Rios, J. J., Aparicio, R. (1997). Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. JAgric Food Chem 45, 2666–2673.

    Article  CAS  Google Scholar 

  • Noor, N., Augustin, M. A. (1984). Effectiveness of antioxidants on the stability of banana chips. J Sci Food Agric 35, 805–808.

    Article  CAS  Google Scholar 

  • Papadopoulos, G., Boskou, D. (1991). Antioxidant effect of natural phenols on olive oil. JAm Oil Chem Soc 68, 669–671.

    Article  CAS  Google Scholar 

  • Perrin, J. L. (1992). Minor constituents and natural antioxidants of olives and olive oil. Rev Fr Corps Gras 39, 25–32.

    CAS  Google Scholar 

  • Pokorny, J. (1990). Influence of lipid alteration on taste and flavour of foods. Nahrung 34, 887–897.

    Article  CAS  Google Scholar 

  • Pokorny, J. (1991). Natural antioxidants for food use. Trends Food Sci Technol 2, 223–227.

    Article  CAS  Google Scholar 

  • Przybylski, R., et al. (1993). Stability of low linolenic acid canola oil to accelerated storage at 60°C. Lebensm Wiss Technol 26, 205–209.

    Article  CAS  Google Scholar 

  • Przybylski, R., Eskin, N. A. M. (1995). Methods to measure volatile compounds and the flavor significance of volatile compounds. In Methods To Assess Quality and Stability of Oils and Fat-Containing Foods, pp. 107–133. Champaign, IL: AOCS Press.

    Google Scholar 

  • Przybylski, R., Hougen, F. W. (1989). Simple method for estimation of volatile carbonyl compounds in edible oils and fried potato chips. JAm Oil Chem Soc 66, 1456–1458.

    Google Scholar 

  • Rawls, H. R., Van Santen, P. J. (1970). A possible role for singlet oxygen in the initiation of fatty acid autoxidation. JAm Oil Chem Soc 47, 121–124.

    Article  CAS  Google Scholar 

  • Rossell, J. B. (1987). Measurement of rancidity. In Rancidity in Foods, pp. 21–45. Edited by J. C. Allen, R. J. Hamilton. London: Applied Science Publishers.

    Google Scholar 

  • Ruiz-Lopez, M. D., et al. (1995). Stability of a-tocopherol in virgin olive oil during microwave heating. Lebensm Wiss Technol 28, 644–646.

    Article  CAS  Google Scholar 

  • Sanders, T. A. B. (1983). Nutritional significance of rancidity. In Rancidity in Foods, pp. 59–66. Edited by J. C. Allen, R. J. Hamilton. London: Applied Science Publishers.

    Google Scholar 

  • Schaich, K. M. (1992). Metals and lipid oxidation. Contemporary issues. Lipids 27, 209–218.

    Article  CAS  Google Scholar 

  • Schieberle, P., Grosch, W. (1981). Model experiments about the formation of volatile carbonyl compounds. JAm Oil Chem Soc 58, 602–607.

    Article  CAS  Google Scholar 

  • Shahidi, E., Wanasundra, P. D. (1992). Phenolic antioxidants. Crit Rev Food Sci Nutr 32, 67–103.

    Article  CAS  Google Scholar 

  • Simic, M. G., Jovanovic, S. V., Niki, E. (1992). Mechanism of lipid oxidative processes and their inhibition. In Lipid Oxidation in Foods, pp. 14–32. Edited by A. J. St. Angelo. Washington, DC: American Chemical Society.

    Google Scholar 

  • Snyder, J. M., et al. (1988). Comparison of gas chromatographic methods for volatile lipid oxidation compounds in soybean oil. JAm Oil Chem Soc 65, 1617–1620.

    Article  CAS  Google Scholar 

  • Solinas, M., Angerosa, E, Camera, L. (1988). Evoluzione ossidativa di oli vegetali durante la frittura: determinazione dei componenti volatili mediante HRGC e HPLC. Riv Rai Sostanze Grasse 65, 567–574.

    Google Scholar 

  • Solinas, M., Angerosa, E., Cucurachi, A. (1987). Connessione tra prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del difetto di rancidità all’ esame organolettico. Nota 2. Determinazione quantitativa. Riv Ital Sostanze Grasse 64, 137–145.

    CAS  Google Scholar 

  • St. Angelo, A. J. (1996). Lipid oxidation in foods. Crit Rev Food Sci Nutr 36, 175–224.

    Article  Google Scholar 

  • Tsimidou, M., Papadopoulos, G., Boskou, D. (1992). Determination of phenolic compounds in vir gin olive oil by reversed-phase HPLC with emphasis on UV detection. Food Chem 44, 53–60.

    Article  CAS  Google Scholar 

  • Usuki, R., Endo, Y., Kaneda, T. (1984). Prooxidant activities of chlorophylls, and pheophytins on the photooxidation of edible oils. Agric Biol Chem 48, 991–994.

    Article  CAS  Google Scholar 

  • Vercellotti, J. R., St. Angelo, A. J., Spanier, A. M. (1992). Lipid oxidation in food: an overview. In Lipid Oxidation in Foods, pp. 1–11. Edited by A. J. St. Angelo. Washington, DC: American Chemical Society.

    Google Scholar 

  • Verhagen, J., et al. (1977). Conversion of 9-D- and 13-L-hydroperoxylinoleic acids by soybean lipoxygenase-1 under anaerobic conditions. Biochem Biophys Acta 486, 114–118.

    Article  CAS  Google Scholar 

  • Warner, K., Frankel, E. N. (1987). Effect of 3-carotene on light stability of soybean oil. JAm Oil Chem Soc 64, 213–218.

    Article  CAS  Google Scholar 

  • Warner, K., Frankel, E. N., Moulton, K. J. (1988). Flavor evaluation of crude oil to predict the quality of soybean oil. JAm Oil Chem Soc 65, 386–391.

    Article  CAS  Google Scholar 

  • Warner, K., Frankel, E. N., Mounts, T. L. (1989). Flavor and oxidative stability of soybean, sunflower and low erucic rapeseed oils. JAm Oil Chem Soc 66, 558–562.

    Article  CAS  Google Scholar 

  • White, P. J., Armstrong, L. S. (1986). Effect of selected oat sterols on the deterioration of heated soybean oil. JAm Oil Chem Soc 63, 525–529.

    Article  CAS  Google Scholar 

  • Yamauchi, R., Matsushita, S. (1977). Quenching effect of tocopherols on methyl linoleate photooxidation and their oxidation products. Agric Biol Chem 41, 1425–1430.

    Article  CAS  Google Scholar 

  • Yanishleva, N., Schiller, H. (1984). Effect of sitosterol on autoxidation rate and product composition in a model lipid system. J Sci Food Agric 35, 219–224.

    Article  Google Scholar 

  • Zambiazi, R. C. (1997). The Role of Endogenous Lipid Components on Vegetable Oil Stability. Ph.D. Thesis, University of Manitoba.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morales, M.T., Przybylski, R. (2000). Olive Oil Oxidation. In: Harwood, J., Aparicio, R. (eds) Handbook of Olive Oil. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5371-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5371-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5194-6

  • Online ISBN: 978-1-4757-5371-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics