Characterization: Mathematical Procedures for Chemical Analysis

  • Ramón Aparicio


Recent studies point out the consumption of Baetican (Andalusian) olive oil in Germania (Germany) during the last centuries of the Roman Empire (Remesal-Rodríguez 1997). In fact, it has been possible to determine the regions of Baetica and the producers who sent olive oil to Germania at any given time. This research highlights not only economic relations inside the Roman Empire, or how the entire people of Germania became accustomed to eating this product, but also the importance of emphasizing distinctive properties. This means, in other words, the great importance of characterization.


Volatile Compound Aliphatic Alcohol Certainty Factor Sensory Descriptor Hexyl Acetate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, B., Schütze, P. and Will, J. (1993). Expert system for interpretation of x-ray diffraction spectra. Anal ChimActa 271, 287–291.CrossRefGoogle Scholar
  2. Alba, J. (1996). Elaboración de aceite de olive virgen. In El Cultivo del Olivo, pp. 511–537. Edited by D. Barranco, D. Fernandez-Escobar and L. Rallo. Madrid: Mundi-Prensa.Google Scholar
  3. Alberghina, G., et al. (1991). Geographical classification of Sicilian olive oils in terms of sterols and fatty acid contents. J Sci Food Agric 56, 445–455.CrossRefGoogle Scholar
  4. Alessandri, S. (1993). Modelos de clasificación aplicados a los analisis químicos para el estudio del origen y de las caracteristicas de los aceites de oliva. Olivae 47 (6), 52–59.Google Scholar
  5. Alessandri, S., et al. (1992). Frazione alcoholica e fitolo nella discrminaziones delle cultivar di provenienza di oli di oliva Toscani. Paper presented at Proceedings International Conference on Olive Oil Quality, pp. 249–252. Firenze, Italy.Google Scholar
  6. Alonso, V. and Aparicio, R. (1993). Characterization of European virgin olive oils using fatty acids. GrasasAceites 44, 18–24.CrossRefGoogle Scholar
  7. Angerosa, A., et al. (1996a). Influenza della variabile “ambiente” sulla composizione degli oli vergini di oliva. Riv Ital Sostanze Grasse 73, 461–467.Google Scholar
  8. Angerosa, E, et al. (1996b). Sensory evaluation of virgin olive oils by artificial neural network processing of dynamic head-space gas chromatography data. J Sci Food Agric 72, 323–328.CrossRefGoogle Scholar
  9. Angerosa, E. and Di Giovacchino, L. (1996). Natural antioxidants of virgin olive oil obtained by two and tri-phase centrifugal decanters. GrasasAceites 47, 247–254.CrossRefGoogle Scholar
  10. Aparicio, R. (1988). Characterization of foods by inexact rules: The SEXIA expert system. J Chemometr A 3, 175–192.CrossRefGoogle Scholar
  11. Aparicio, R. (1997). Internal report. Results of project FAIR-CT94–1967, 3 out of 4 years project. Internal report. Instituto de la Grasa, Seville, Spain.Google Scholar
  12. Aparicio, R., et al. (1991). An approach for building decision rules by chemometric analysis. An application on olive oil. Chemo Intel! Lab Syst 10, 349–358.CrossRefGoogle Scholar
  13. Aparicio, R., et al. (1994a). Relationship between the COI test and other sensory profiles by statistical procedures. GrasasAceites 45, 26–41.CrossRefGoogle Scholar
  14. Aparicio, R., et al. (1994b). Good control practices underlined by an on-line fuzzy control database. Grasas Aceites 45, 75–81.CrossRefGoogle Scholar
  15. Aparicio, R. and Alonso, V. (1994). Characterization of virgin olive oils by SEXIA expert system. Prog Lipid Res 33, 29–38.CrossRefGoogle Scholar
  16. Aparicio, R., Alonso, V. and Morales, M. T. (1994). Detailed and exhaustive study of the authentication of European virgin olive oils by SEXIA expert system. Grasas Aceites 45, 241–252.CrossRefGoogle Scholar
  17. Aparicio, R. and Baeten, V. (1998a). Results of applying FT-Raman to the detection of seedoils in olive oil. Internal report IGS-RA010698, Instituto de la Grasa, Seville, Spain.Google Scholar
  18. Aparicio, R. and Baeten, V. (1998b). Fats and oils authentication by FT-Raman. OCL 5 (3), 14–16.Google Scholar
  19. Aparicio, R., Calvente, J. J. and Morales, M. T. (1996). Sensory authentication of European extra-virgin olive oil varieties by mathematical procedures. JSci FoodAgric 72, 435–447.Google Scholar
  20. Aparicio, R., Ferreiro, L and Alonso, V. (1994). Effect of climate on the chemical composition of virgin olive oil. Anal Chim Acta 292, 235–241.CrossRefGoogle Scholar
  21. Aparicio, R., Ferreiro, L. and Rodriguez, J. L. (1991a). Characterisation of Andalusian Virgin Olive Oils: SEXIA Project, pp. 1–96. Seville, Spain: Andalusian Ministry of Agriculture and Fishing.Google Scholar
  22. Aparicio, R., Ferreiro, L. and Rodriguez, J. L. (1991b). Caracterización de alimentos combinando reglas de decision relacionales y lineales. Una aplicación al aceite de oliva virgen de Malaga GrasasAceites 42, 132–142.CrossRefGoogle Scholar
  23. Aparicio, R., Gutiérrez, E and Rodriguez-Morales, J. (1992). Relationship between flavour descriptors and overall grading of analytical panels for virgin olive oil. J Sci Food Agric 58, 555–562.Google Scholar
  24. Aparicio, R. and Morales, M. T. (1995). Sensory wheels: A statistical technique for comparing QDA panels. Application to virgin olive oil. JSci Food Agric 67, 247–257.CrossRefGoogle Scholar
  25. Aparicio, R. and Morales, M. T. (1998). Characterization of olive ripeness by green aroma compounds of virgin olive oil. JAgric Food Chem 46, 1116–1122.CrossRefGoogle Scholar
  26. Aparicio, R., Morales, M. T. and Alonso, V. (1996). Relationship between volatile compounds and sensory attributes by statistical sensory wheel. JAm Oil Chem Soc 73, 1253–1264.CrossRefGoogle Scholar
  27. Aparicio, R., Morales, M. T. and Alonso, V. (1997). Authentication of European virgin olive oils by their chemical compounds, sensory attributes and consumers attitudes. JAgric Food Chem 45, 1076–1083.Google Scholar
  28. Armanino, C., et al. (1989). Chemometric analysis of Tuscan olive oils. Chemo Intell Lab Syst 5, 343–354.CrossRefGoogle Scholar
  29. Armstrong, R. D. and Beck, P. O. (1990). An algorithm to assist in the identification of multiple multivariate outliers when using a least absolute value criterion. In Robust Regression: Analysis and Applications,pp. 89–104. Edited by K. D. Lawrence and J. L. Arthur. New York: Marcel Dekker.Google Scholar
  30. Arnold, G. M. and Williams, A. A. (1986). The use of generalised procruters techniques in sensory analysis. In Statistical Procedures in Food Research, pp. 233–254. Edited by J. R. Piggott. London: Elsevier Science.Google Scholar
  31. Baeten, V. (1998). Authentication of Virgin Olive Oil by FT-Raman Spectroscopy. Ph.D. Thesis. Catholic University of Louvain, Belgium.Google Scholar
  32. Baeten, V., et al. (1996). Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. JAgric Food Chem 44, 2225–2230.CrossRefGoogle Scholar
  33. Baeten, V, et al. (1998). Oils and fats classification by FT-Raman spectroscopy. JAgric Food Chem 46, 2638–2646.CrossRefGoogle Scholar
  34. Baeten, V. and Aparicio, R. (1997). Possibilities offered by infrared and Raman spectroscopic techniques in virgin olive oil authentication. Olivae 69 (12), 38–43.Google Scholar
  35. Barlow, H. B. (1989). Unsupervised learning. Neural Comput 1, 295–311.CrossRefGoogle Scholar
  36. Barto, A. G. and Anandan (1985). Pattern recognizing stochastic learning automata. IEEE Trans Syst Man Cyber 15, 360–375.Google Scholar
  37. Barto, A. G., Sutton, R. S. and Watkins, C. J. C. H. (1991) Learning and sequential decision making. In Learning and Computational Neuroscience, pp. 112–136. Edited by M. Gabriel and J. W. Moore. Cambridge, MA: MIT Press.Google Scholar
  38. Betteridge, D., et al. (1988). Development of an expert system for the selection of sample points for moisture analysis. Anal Chem 60, 1534–1539.CrossRefGoogle Scholar
  39. Bianchi, G., et al. (1994). Chemical structure of long-chain esters from “Sansa” olive oil. JAm Oil Chem Soc 71, 365–369.CrossRefGoogle Scholar
  40. Blaffert, T. (1986). EXPERTISE-An expert system for infrared spectra evaluation. Anal Chim Acta 191, 161–168.CrossRefGoogle Scholar
  41. Blekas, G., Tsimidou, M. and Boskou, D. (1995). Contribution of a-tocoferol to olive oil stability. Food Chemistry 52, 289–294.CrossRefGoogle Scholar
  42. Borg, I. and Lingoes, J. (1987) Multidimensional Similarity Structure Analysis. New York: Springer Publishing CoCrossRefGoogle Scholar
  43. Boschelle, O., et al. (1994). Caratterizzazione delle cultivar di olivo del Golfo di Trieste mediante metodi chemiometrice applicati ai dati chimico fisici. Riv Ital Sostanze Grasse 71, 57–65.Google Scholar
  44. Bundy, A. (1983). The Computer Modelling of Mathematical Reasoning, pp. 55–174. London: Academic Press.Google Scholar
  45. Calvente, J. J. and Aparicio, R. (1995). A fuzzy filter for removing interferences among membership grade functions. An application to pre-treatment of data in olive oil authentication. Anal Chim Acta 312, 281–294.CrossRefGoogle Scholar
  46. Capasso, R., et al. (1992). Isolation, spectroscopy and selective phytotoxic effects of poliphenols from vegetable waste waters. Phytochemistry 31, 4125–4128.CrossRefGoogle Scholar
  47. Cartechini, A., et al. (1994). Olive ripening and oil quality of the cultivars Mignola and Orbetana. In Annali della Facolta di Agraria, Universita degli Studi di Perugia 45 249–259. (in Italian). Christopoulou, E., et al. (1996). Influence of certain factors on the composition of olive-pomace oils.Google Scholar
  48. Part II. Sterols, triterpenic diacohols and aliphatic alcohols. Riv Ital Sostanze Grasse 73, 201–211 Cimato, A., et al. (1990a). La caratterizzazione dell’olio Extravergine “Tipico Toscano, pp. 1–77. Montelpulciano, Italy: Grifo.Google Scholar
  49. Cimato, A., et al. (1990b). Cultivars and environment as regulating factors in polyphenol and tocopherol contents of the Tuscan oil. Acta Horticult 286, 457–460.Google Scholar
  50. Cimato, A., et al. (1991). La caratterizzazione dell’olio Extravergine “Tipico Toscano, pp. 1–156. Firenze, Italy: Consorzio Regionale Olio Extra Vergine di Oliva “Tipico Toscano.”Google Scholar
  51. Cimato, A., et al. (1992). Caratterizzazione analitica degli oli Toscani. Proceedings of International Conference on Olive Oil Quality, pp. 167–170. Firenze, Italy.Google Scholar
  52. Cimato, A., Mattei, A. and Osti M. (1990). Variation of polyphenol composition with harvesting period. Acta Horticult 286, 453–456.Google Scholar
  53. Cooley, W. W. and Lohnes, P. R. (1971). Multivariate Data Analysis. New York: John Wiley and Sons. Cresti, M., et al. (1994). Effect of salinity on productivity and oil quality of olive (Olea Europea L.) plants. Adv Hortic Sci 8, 211–214.Google Scholar
  54. Cresti, M., et al. (1997). Comunicación preliminar sobre la identificación del DNA de las hojas y el aceite de oliva de Olea Europaea. Olivae 69 (12), 36–37.Google Scholar
  55. De Felice, M., Gomes, T. and Catalano, M. (1979). Estrazione dell’olio delle olive con sistemi continui di centrifugazione delle paste. Risultati di ricerche triennali. Riv Ital Sostanze Grasse 56, 361–369.Google Scholar
  56. De Leonardi, A., De Felice, M. and Macciolam V. (1996). Studio sulla composizione acidica degli oli vergini di oliva del Basso Molise. Riv Ital Sostanze Grasse 73, 321–325.Google Scholar
  57. Derde, M. P., et al. (1987). Comparison of rule-building expert systems with pattern recognition for the classification of analytical data. Anal Chem 59, 1868–1871.CrossRefGoogle Scholar
  58. Di Giovacchino, L. and Serraiocco, A. (1995). Influenza dei sistemi di lavorazione delle olive sullaGoogle Scholar
  59. composizione dello spazio di testa degli oli. Riv Ital Sostanze Grasse 72 443–450.Google Scholar
  60. Di Giovacchino, L., Solinas, M. and Miccoli, M. (1994). Effect of extraction systems on the quality ofGoogle Scholar
  61. virgin olive oil. JAm Oil Chem Soc 71, 1189–1193.Google Scholar
  62. Drava, G., et al. (1994). Development of the chemical model of a typical food product: Olive oil from an Italian region (Basilicata). JSci FoodAgric 65, 21–30.CrossRefGoogle Scholar
  63. Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications, pp. 297–307. San Diego, CA: Academic Press.Google Scholar
  64. Dupuy, N., Huvenne, J. P., Legrand, P. and Le Bourlant, R. (1996). Classification of edible fats and oilsGoogle Scholar
  65. by principal component analysis of Fourier transform infrared spectra. Food Chem 57, 245–251.Google Scholar
  66. Eddid, O. and Nickless, G. (1987). Elucidation of olive oil classification by chemometrics. Analyst 112, 391–395.CrossRefGoogle Scholar
  67. Elder, A. (1996). Greece boots olive oil. Int Food Manufact 13 (4), 27–29.Google Scholar
  68. Esposito, G. and Peri, C. (1994). A study of sensory and nutritional quality of virgin olive oil. Presentation of an European project of research. GrasasAceites 45, 5–8.CrossRefGoogle Scholar
  69. Esti, M., et al. (1996a). Caratteristiche qualitative e compositive di oli vergini di oliva prodotti in Molise. Riv Ital Sostanze Grasse 73, 101–106.Google Scholar
  70. Esti, M., et al. (1996b). Composti antiossidanti e parametri qualitativi di oli vergini di oliva prodotti in Molise. Riv Ital Sostanze Grasse 73, 147–150.Google Scholar
  71. Commission of the European Communities (EC) (1995). Official Journal of the Commission of the European Communities,Regulation No. 656/95, L260, 29 March 1995.Google Scholar
  72. Commission of the European Communities (EC) (1997). Official Journal of the Commission of the European Communities,Regulation No. 2472/97, L 341, 11 December 1997.Google Scholar
  73. Ferreiro, L. and Aparicio, R. (1992). Influencia de la altitud en la composición química de los aceites de oliva vírgenes de Andalucia. Ecuaciones matemâticas de clasificación. Grasas Aceites 43, 149–155.CrossRefGoogle Scholar
  74. Fiestas, J. A. (1953). Estudio del alpechín para su aprovechamiento industrial. I. Concentración de los azúcares y demas sustancias que lleva en emulsion y disolución por tratamiento con óxido de calcio. Grasas Aceites 4, 63–68.Google Scholar
  75. Flath, R., Forrey, R. R. and Guadagni, D. G. (1973). Aroma components of olive oil. JAgric Food Chem 21, 948–952.CrossRefGoogle Scholar
  76. Flor, R. V, Hecking, L. T. and Martin, B. D. (1993). Development of high-performance liquid chromatography criteria for determination of grades of commercial olive oils. Part I. The normal ranges for the triacylglycerols. JAm Oil Chem Soc 70, 199–203.CrossRefGoogle Scholar
  77. Forina, M., et al. (1983). Valutazione delle caratteristiche chimiche dell’olio di oliva in funzione dell’annata di produzione mediante metodi di classificazione multivariati. Riv Ital Sostanze Grasse 60, 607–613.Google Scholar
  78. Forina, M., Lanteri, S. and Armanino, C. (1987) Chemometrics in food chemistry, pp. 93–134. In Topics in Current Chemistry, Vol. 141, pp. 93–134. Berlin: Springer-Verlag.Google Scholar
  79. Forina, M. and Tiscornia, E. (1982). Pattern recognition method in the prediction of Italian olive oil origin by their fatty acid content. Ann Chim 72, 143–155.Google Scholar
  80. Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics 35 (2), 109–135.CrossRefGoogle Scholar
  81. Frega, N., Bocci, E and Lercker, G. (1991). Composizione lipidica della drupa di olivo di due cultivars della zona del Chianti in funzione della maturazione. Nota I: Trigliceridi de acidi grassi. Riv Rai Sostanze Grasse 68, 69–74.Google Scholar
  82. Frega, N. and Lercker, G. (1986). Componenti lipidici minori della drupa di olivo in diversi stadi di maturazione. Riv Ital Sostanze Grasse 63, 393–398.Google Scholar
  83. Gandul-Rojas, B. and Mínguez-Mosquera, M. I. (1996). Chlorophyll and carotenoid composition in virgin olive oils from various Spanish olive varieties. J Sci Food Agric 72, 31–39.CrossRefGoogle Scholar
  84. Garcia, J. and Aparicio, R. (1993). Triacylglycerol determination based on fatty acid composition using chemometrics. Anal Chim Acta 271, 293–298.CrossRefGoogle Scholar
  85. Gerber, D. (1995). The Christian Rosi mill at Monies. Olive oil: The little orchard. Process 1102, 20–21 (in French).Google Scholar
  86. Gigliotti, C., Daghetta, A. and Sidoli, A. (1993). Indagine conoscitiva sul contenuto trigliceridico di oli extra vergini di oliva di varia provenienza. Riv Ital Sostanze Grasse 70, 483–489.Google Scholar
  87. Goldhamer, D., Dunai, J. and Ferguson, L. (1994). Irrigation requirements of olive trees and responses to sustained deficit irrigation. Acta Horticult 356, 172–176.Google Scholar
  88. Goodacre, R., Kell, D. B. and Bianchi, G. (1992). Neural networks and olive oil. Nature 359, 594.CrossRefGoogle Scholar
  89. Gordon, J. and Shortliffe, E. H. (1985). The Dempster and Shafer theory of evidence. In Rule-Based Expert System, pp. 273–292. Edited by B. G. Buchanan and E. H. Shortliffe. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
  90. Guinda, A., Lanzón, A. and Albi, T. (1996). Differences in hydrocarbons of virgin olive oils obtained from several olive varieties. JAgric Food Chem 44, 1723–1726.CrossRefGoogle Scholar
  91. Gutiérrez, R. (1964). Application des essais organoleptiques a quelques problems de l’huile d’olive. Inf Olèicoles Int 28, 93–99.Google Scholar
  92. Gutiérrez R., et al. (1989). Bitter taste of virgin olive oil: correlation of sensory evaluation and instrumental HPLC analysis. JFood Sci 54, 68–70.CrossRefGoogle Scholar
  93. Gutiérrez, R., et al. (1974). Correlaciôn entre métodos subjetivos y objetivos en la determinación de la calidad. Problemas del aceite de oliva. Afinidad 31, 335–350.Google Scholar
  94. Hartigan, J. A. (1975). Clustering Algorithms. New York: John Wiley and Sons.Google Scholar
  95. Hebb, D. O. (1949). The Organization of Behaviour. New York: John Wiley and Sons.Google Scholar
  96. Hermoso, M., et al. (1996). Maduración. In El Cultivo del Olivo, pp. 139–153. Edited by D. Barranco, D. Fernandez-Escobar and L. Rallo. Madrid: Mundi-Prensa.Google Scholar
  97. Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
  98. Hourant, P. (1995) Contrôle de qualité des matières grasses alimentaires par spectroscopie infrarouge. Mémoire grade d’ingénieur Agronome. Université Catholique de Louvain, UCL, Belgium.Google Scholar
  99. Inglese, P. (1994). La influencia de la variedad en las caracteristicas cualitativas del aceite de oliva. Olivae 54 (12), 42–47.Google Scholar
  100. Jacobsen, T. and Gunderson, R. W. (1986) Applied cluster analysis. In Statistical Procedures in Food Research, pp. 361–408. Edited by J. R. Piggot. London: Elsevier Applied Science.Google Scholar
  101. Jancini, G. and Fedeli, N. (1972). Acidi triterpenici dell’olio di oliva. Rc Ist Lomb Sci Lett 106, 446–451. Jiménez de Blas, O. and del Valle, A. (1995). Gas chromatographic differentiation of virgin, refined, and solvent-extracted olive oils. JAssoc Off Anal Chem 79, 707–710.Google Scholar
  102. Jiménez de Blas, O. and del Valle, A. (1996). Determination of sterols by capillary column gas chromatography. Differentiation among different types of olive oil: Virgin, refined, and solvent-extracted. JAm Oil Chem Soc 73, 1685–1689.CrossRefGoogle Scholar
  103. Jiménez-Mdrrquez, A., Hermoso-Fernandez, M. and Uceda Ojeda, M. (1995). Elaboración del aceite de oliva virgen mediante sistema continuo en dos fases. Influencia de diferentes variables del proceso en algunos pardmetros relacionados con la calidad del aceite. GrasasAceites 46, 299–303.CrossRefGoogle Scholar
  104. Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications, pp. 1–122. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
  105. Kaufmann, A. and Gupta, M. M. (1991). Introduction to Fuzzy Arithmetic: Theory and Applications. New York: van Nostrand Reinhold.Google Scholar
  106. Klahr, P. and Waterman, D. A. (1986). Expert System Techniques, Tools and Applications, pp. 3–70. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
  107. Khuri, A. I. and Cornell, J. A. (1987). Response Surfaces-Designs and Analyses, pp. 303–331. New York: Marcel Dekker.Google Scholar
  108. Kohonen, T. (1989). Self-Organization and Associative Memory, 3rd ed. Berlin: Springer-Verlag. Koprivnjak, O. and Conte, L. S. (1996). Caratteristiche della frazione idrocarburica e composizioneGoogle Scholar
  109. degli acidi grassi degli oli d’oliva vergini provenienti dalla zona di Pola (Croazia). Riv Ital SostanzeGrasse 73 317–320.Google Scholar
  110. Lai, A., et al. (1994b). NMR Investigation of the intramolecular distribution of deuterium in natural triacylglycerols. Magn Reson Chem 33, 163–166.CrossRefGoogle Scholar
  111. Lai, Y. W, Kemsley, E. K. and Wilson, R. H. (1994a). Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. JAgric Food Chem 42, 1154–1159.CrossRefGoogle Scholar
  112. Lanzón, A., Albi, T. and Gracián, J. (1986). Influencia del sistema de extracción en algunos componentes del aceite de oliva. Primeros ensayos. Grasas Aceites 37, 254–258.Google Scholar
  113. Leardi, R. and Paganuzzi,V. (1987). Caratterizzazione dell’origine di oli di oliva extravergini mediante metodi chemiometrici aplicati alla frazione sterolica. Riv Ital Sostanze Grasse 64, 131–136.Google Scholar
  114. León, M. and Lanzón, A. (1992). Aceites de oliva virgen espanoles discriminados por la Comunidad Economica Europea. Paper presented at 2nd Congreso Internacional de Quimica de la ANQUE, pp. I1–12. Burgos, Spain.Google Scholar
  115. Lohninger, H. and Stand, E (1992). Comparing the performance of neural networks to well-established methods of multivariate data analysis: The classification of mass spectral data. Fresen JAnal Chem 344, 186–189.CrossRefGoogle Scholar
  116. Lopez Sabater, M. C., Boatella, J. and Torre-Boronat, M. C. (1986). Application de l’analyse discriminante a la differenciation d’huiles de differentes varietes. Rev Fr Corps Gras 33 (2), 65–67.Google Scholar
  117. Losi, G. and Pallota, U. (1966). Sulla composizione degli oli di oliva italiani. Riv Ital Sostanze Grasse 43, 425–430.Google Scholar
  118. Maestro Duran, R. (1990). Relationship between the composition and ripening of the olive oil and quality of the oil. Acta Horticult 286, 441–451.Google Scholar
  119. Mardia, K. V. (1972). Statistics of Directional Data. New York: Academic Press.Google Scholar
  120. Mariani, C., et al. (1991). Indagine sulle variazioni dei componenti minori liberi de esterificati di oli ottenuti da olive in funzione della maturazione e dello stoccaggio. Riv Ital Sostanze Grasse 68, 179–186.Google Scholar
  121. Martel, J. and Alba, J. (1981). Influencia del metodo de obtencion de aceites de oliva por centrifugacionGoogle Scholar
  122. de pastas sobre su contenido en alcoholes grasos superiores. Grasas Aceites 32 233–237.Google Scholar
  123. Martens, H. and Nees, T. (1989). Multivariate Calibration, pp. 237–266. Chichester, England: John Wiley and Sons.Google Scholar
  124. Massart, D. L. and Kaufman, L. (1983). Hierarchical clustering methods. In The Interpretation ofAnalytical Chemical Data by the Use of Cluster Analysis, pp. 75–99. Edited by J. D. Winefordner. New York: John Wiley and Sons.Google Scholar
  125. Mattei, A., Stella, C. and Osti, M. (1988). Olio extra vergine di oliva e componenti polari minori: influenza dei sistemi e delle condizioni di estrazione. Riv Ital Sostanze Grasse 65, 575–579.Google Scholar
  126. McCulloch, W S. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bull Google Scholar
  127. Math Biophys 5 115–133.Google Scholar
  128. McEwan, J. A. (1994). Consumer attitudes and olive oil acceptance: The potential consumer. Grasas Aceites 45, 9–15.CrossRefGoogle Scholar
  129. Mincione, B., et al. (1996). Ricerche sugli oli di oliva monovarietali Nota II: Caratterizzazione dell’olio di Peranzana Riv Ital Sostanze Grasse 73, 245–257.Google Scholar
  130. Mínguez-Mosquera, M. I., et al. (1990). Pigments present in virgin olive oil. JAm Oil Chem Soc 67, 192–196.Google Scholar
  131. Mínguez-Mosquera, M. I. and Garrido-Fernandez, E (1986). Composición y evolución de clorofilas y carotenoides durante el desarrollo y maduración de los frutos del olivo. Grasas Aceites 37, 337–342.Google Scholar
  132. Minski, M. L. and Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.Google Scholar
  133. Montedoro, G., et al. (1993). I potenziali modelli che definiscono la tipicita degli oli extra vergini di oliva. Ind Aliment 32, 618–631.Google Scholar
  134. Montedoro, G., et al. (1995). Characterization of some Italian virgin olive oils in relation to origin area. Riv Ital Sostanze Grasse 72, 403–413.Google Scholar
  135. Montedoro, G., Bertuccioli, M. and Anichini, E (1978). Aroma analysis of virgin olive oil by head space (volatiles) and extraction (polyphenols) techniques. In Flavor of Foods and Beverages. Chemistry and Technology, pp. 247–281.Google Scholar
  136. Edited by G. Charalambous and G. E. Inglett. New York: Academic Press.Google Scholar
  137. Morales, M. T., et al. (1995). Virgin olive oil aroma: Relationship between volatile compounds and sensory attributes by chemometrics. JAgric Food Chem 43, 2925–2931.CrossRefGoogle Scholar
  138. Morales, M. T., Angerosa, E and Aparicio, R. (1999). Effect of the extraction conditions of virgin olive oil on the lipoxygenase cascade: Chemical and sensory implications. Grasas Aceites 50 (2), 114–121.CrossRefGoogle Scholar
  139. Morales, M. T. and Aparicio, R. (1993). Characterizing some European olive oil varieties by volatiles using statistical tools. GrasasAceites 44, 113–115.Google Scholar
  140. Morales, M. T. and Aparicio, R. (1999). Effect of the extraction conditions on virgin olive oil sensory quality. JAm Oil Chem Soc 76, 295–300.CrossRefGoogle Scholar
  141. Morales, M. T., Aparicio, R. and Calvente, J. J. (1996). Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Fragr J11, 171–178.Google Scholar
  142. Mousa, Y. M., et al. (1996). Effect of altitude on fruit and oil quality characteristics of “Mastoides” olives. J Sci Food Agric 71, 345–350.CrossRefGoogle Scholar
  143. Nergiz, C. and Ünal, K. (1990). The effect of extraction systems on triterpene alcohols and squalene content of virgin olive oil. Grasas Aceites 41, 117–121.Google Scholar
  144. Oja, E. (1989). A simplified neuron model as a principal component analyzer. J Math Biol 15, 267–273.CrossRefGoogle Scholar
  145. Olías, J. M., et al. (1980). Componentes volatiles en el aroma del aceite de oliva. IV. Su evolución e influencia en el aroma durante el proceso de maduración de los frutos en las variedades Picual y Hojiblanca. Grasas Aceites 31, 391–402.Google Scholar
  146. Osman, M., et al. (1994). Qualitative changes in olive oil of fruits collected from trees grown at two altitudes. Riv Ital Sostanze Grasse 71, 187–190.Google Scholar
  147. Paganuzzi, V. (1986). Utilita della determinazione di steroli de eritrodiolo nella individuazione dell’origine degli oli di oliva vergini mediante metodi chemiometrici. Riv Ital Sostanze Grasse 63, 543–549.Google Scholar
  148. Paganuzzi, V. (1987). Utilidad de la determinación de esteroles y eritrodioles para individualizar el origen de los aceites de oliva vírgenes por métodos quimiométricos. Olivae 16, 19–22.Google Scholar
  149. Pagliarini, E., Bertuccioli, M. and Abbà, S. (1994). Consumer attitudes and olive oil acceptance: The traditional consumer. GrasasAceites 45, 16–19.CrossRefGoogle Scholar
  150. Papadopoulos, G. and Boskou, D. (1991). Antioxidant effect of natural phenols on olive oil. JAm Oil Chem Soc 68, 669–671.CrossRefGoogle Scholar
  151. Pastor, M. and Jiménez (1992). Arbequina: Variedad de olivo de gran interés en Andalucia. Agricultura 719, 497–501.Google Scholar
  152. Pfaffenberger, R. C. and Dielman, T. E. (1990). A comparison of regression estimators when both multicollinearity and outliers are present. In Robust Regression: Analysis and Applications, pp. 243–270. Edited by K. D. Lawrence and J. L. Arthur. New York: Marcel Dekker.Google Scholar
  153. Piggot, J. R. and Sharman, K. (1986). Method to aid interpretation of multidimensional data. In Statistical Procedures in Food Research, pp. 181–132. Edited by J. R. Pigott. London: Elsevier Applied Science.Google Scholar
  154. Proto, M. (1992). Indagine sui contenuti di acido linoleico e trilinoleina in alcuni oli di semi e di oliva. Ind Aliment 31, 36–38.Google Scholar
  155. Rahmani, M., Lamrini, M. and Saari-Csallany, A. (1997). Desarrollo de un método sencillo para la determinación del periodo óptimo de recolección de las aceitunas. Olivae 69 (12), 48–51.Google Scholar
  156. Ranalli, A. and Angerosa, E (1996). Integral centrifuges for olive oil extraction. The qualitative characteristics of products. JAm Oil Chem Soc 73, 417–422.CrossRefGoogle Scholar
  157. Remesal-Rodriguez, J. (1997). Heeresversongung and die wirtschaflichen beziehungen der Baetica and Germanien, pp. 1–20. Stuttgart, Germany: Konrad Theiss Verlag.Google Scholar
  158. Rosenblatt, E (1962). Principles of Neurodynamics. New York: Spartan.Google Scholar
  159. Rozeboom, W. W. (1979). Ridge regression: Bonanza or beguilement? Psychol Bull 86, 242–249.CrossRefGoogle Scholar
  160. Russo, C. and Fichera, G. (1993). Caratterizzazione degli oli di pressione della zona a Nord dell’Etna. Ind. Aliment 32, 609–618.Google Scholar
  161. Sacchi, R., et al. (1996). A high-field IH nuclear magnetic resonance study of the minor components in virgin olive oils. JAm Oil Chem Soc 73, 747–758.CrossRefGoogle Scholar
  162. Salas, J., et al. (1997). Influencia del nego sobre la composicion y caracteristicas organolepticas del aceite de oliva. GrasasAceites 48, 74–82.CrossRefGoogle Scholar
  163. Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 2, 359–473.CrossRefGoogle Scholar
  164. Sato, T. (1994). Application of principal component analysis on near-infrared spectroscopic data of vegetable oils for their classification. JAm Oils Chem Soc 71, 293–298.CrossRefGoogle Scholar
  165. Schierle, C. and Otto, M. (1992). Comparison of a neural network with multiple linear regression for quantitative analysis in ICP-atomic emission spectroscopy. Fresen JAnal Chem 344, 190–194.CrossRefGoogle Scholar
  166. Schiffman, S., Reynolds, M. L. and Young, F. W. (1981). Introduction to Multidimensional Scaling. Theory, Methods and Applications, pp. 3–85. Orlando FL: Academic Press.Google Scholar
  167. Serani, A. and Piacenti, D. (1992). I fenomeni chimico-fisici che regolano la perdita degli steroli liberi durante la raffinazione degli oli vegetali. Riv Ital Sostanze Grasse 69, 311–315.Google Scholar
  168. Shaw, D. A., et al. (1996) Discrimination of different olive oils using 13C NMR and variable reduction. Paper presented at Food Authenticity’96: Method for the Measurement of Food Authenticity and Adulteration. Norwich, England: Institute of Food Research.Google Scholar
  169. Shirai, Y. and Tsujii, J. (1982). Artificial Intelligence: Concepts, Techniques and Applications, pp. 2–87. Chichester, England: John Wiley and Sons.Google Scholar
  170. Solinas, M., Angerosa, E and Marsilio, V (1988). Indagine su alcuni componenti dell’aroma degli oli vergini di oliva in relazione alla varieta delle olive. Riv Ital Sostanze Grasse 65, 361–368.Google Scholar
  171. Solinas, M., Marsilio, V. and Angerosa, E (1987). Evoluzione di alcuni componenti dell’aroma degli oli vergini di oliva in relazione al grado di maturazione delle olive. Riv Ital Sostanze Grasse 64, 475–480.Google Scholar
  172. Song, X., Chen, Z. and Yu, R. (1992). Artificial neural networks applied to odor classification for chemical compounds. Chemo Intel Lab Syst 16, 213–219.CrossRefGoogle Scholar
  173. Song, X. and Yu, T. (1993). Artificial neural networks applied to the quantitative structure-activity relationship study of dihydropteridine reductase inhibitors. Chemo Intel Lab Syst 19, 101–109.CrossRefGoogle Scholar
  174. Tabachnick, B. G. and Fidell, L. S. (1983). Using Multivariate Statistics. New York: Harper and Row. Tacchino, E. and Borgogni, C. (1983). Indagine sul contenuto di alcoli alifatici dell’olio d’oliva di pressione e di estrazione. Riv Ital Sostanze Grasse 60, 575–581.Google Scholar
  175. The world olive oil market. (1997). Olivae 69 (12), 14–16.Google Scholar
  176. Tong, R. M. (1977). A control engineering review of fuzzy systems. Automatica 13, 559–569.CrossRefGoogle Scholar
  177. Tous, J., et al. (1997). Caracteristicas de los aceites de oliva virgen de la variedad Arbequina. Fruticul Prof 88, 118–124.Google Scholar
  178. Tsimidou, M. and Karakostas, K. X. (1993). Geographical classification of Greek virgin olive oil by non-parametric multivariate evaluation of fatty acid composition. J Sci Food Agric 62, 253–257.CrossRefGoogle Scholar
  179. Tsimidou, M., Macrae, R. and Wilson, I. (1987). Authentication of virgin olive oils using principal component analysis of triglyceride and fatty acid profiles. Part 1. Classification of Greek olive oils. Food Chem 25, 227–239.CrossRefGoogle Scholar
  180. Uceda, M. and Hermoso, M. (1996) La calidad del aceite de oliva. In El Cultivo del Olivo, pp. 541–563. Edited by D. Barranco, D. Fernandez-Escobar and L. Rallo. Madrid: Mundi-Prensa.Google Scholar
  181. Umbers, I. G. and King, P. J. (1981). An analysis of human-decision-making in cement kiln control and the implications for automation. In Fuzzy Reasoning and Its Applications, pp. 369–380. Edited by E. H. Mandami and B. R. Gaines. London: Academic Press.Google Scholar
  182. van de Voort, E. R., Ismail, A. A. and Sedman, J. (1995). A rapid, automated method for the determination of cis and trans content of fats and oils by Fourier transform infrared spectroscopy. JAm Oils Chem Soc 72, 873–880.CrossRefGoogle Scholar
  183. Vlahov, G. (1996a). The structure of monovarietal olive oils: A 13C-NMR comparative study. Fett/Lipid 6, 203–205.CrossRefGoogle Scholar
  184. Vlahov, G. (1996b). Improved quantitative 13C nuclear magnetic resonance criteria for determination of grades of virgin olive oils. The normal ranges for diglycerides in olive oil. JAm Oil Chem Soc 73, 1201–1203.CrossRefGoogle Scholar
  185. Wherry, R. J. (1984). Contributions to Correlational Analysis. New York: Academic Press.Google Scholar
  186. Whitley, D. and Hanson, T. (1989). Optimizing neural networks using faster more acurate genetic search. In Proceeding of Third International Conference on Genetic Algorithms, pp. 391–396. Edited by J. D. Schaffer. San Mateo, CA: Morgan Kaufmann.Google Scholar
  187. Wold, S. (1978). Cross-validatory estimation of the number of components in factor analysis and principal components models. Technometrics 20, 397–406.CrossRefGoogle Scholar
  188. Zadeh, L. A. (1965). Fuzzy sets. Inf Control 8, 338–353.CrossRefGoogle Scholar
  189. Zamora, R., Navarro, J. L. and Hidalgo, E. J. (1994). Identification and classification of olive oils by high-resolution 13C nuclear magnetic resonance. JAm Oils Chem Soc 71, 361–364.CrossRefGoogle Scholar
  190. Zupan, J. (1982). Clustering of large data sets. New York: Research Studies Press.Google Scholar
  191. Zupan, J., et al. (1988). Building knowledge into an expert system. Chemo Int Lab Syst 4, 307–314.CrossRefGoogle Scholar
  192. Zupan, J., et al. (1994). Classification of multicomponent analytical data of olive oils using different neural networks. Anal Chim Acta 292, 219–234.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ramón Aparicio

There are no affiliations available

Personalised recommendations